Curcumin (CUR) is the major bioactive component of turmeric (), commonly used as a spice and traditional medicine in India. CUR possesses a wide range of pharmacological benefits, including antioxidant, anticarcinogenic, antimutagenic, anti-inflammatory, anti-Alzheimer, and anti-Parkinson effects. The CUR-membrane interaction is believed to be the reason for such biological activity of CUR. Several research groups have modeled the interaction of CUR with artificial model lipid membranes using various techniques such as nuclear magnetic resonance (NMR), small-angle X-ray scattering (SAXS), and differential scanning calorimetry (DSC). However, the mechanism of its action is still unclear. A fluorescent-probe-based technique could be advantageous to study the CUR-lipid membrane interaction due to its sensitivity toward the local environment and its multiparametric nature. In this work, we have used the intrinsic fluorescence properties of CUR to investigate CUR-induced physical property changes in 1,2-dimyristoyl--glycero-3-phosphocholine (DMPC) multilamellar vesicles (MLVs) at various CUR concentrations. By rationalizing the results of steady-state fluorescence intensity, fluorescence anisotropy, temperature-dependent fluorescence intensity, temperature-dependent fluorescence anisotropy, and quenching experiments, we have proposed a model showing concentration-dependent effects of CUR on the DMPC bilayer membrane. We suggest that at low concentrations (≤1 mol %), CUR is homogeneously distributed in the DMPC bilayer membrane in both the solid gel (SG) and liquid crystalline (LC) phases. At high concentrations (>1 mol %), CUR molecules form segregated domains that fluidize both membrane phases. However, the CUR-induced fluidization is less pronounced in the LC phase as some CUR molecules from the domain partition into the bilayer core. Further, the effects of membrane-destabilizing molecules such as bile salts, capsaicin (CAP), and piperine (PIP) on CUR-loaded DMPC multilamellar vesicles were studied. Our work also shows that CUR has a stabilizing effect on the DMPC membrane at high concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.1c02407DOI Listing

Publication Analysis

Top Keywords

multilamellar vesicles
16
dmpc multilamellar
12
cur
11
property changes
8
effects membrane-destabilizing
8
membrane-destabilizing molecules
8
fluorescence intensity
8
fluorescence anisotropy
8
temperature-dependent fluorescence
8
dmpc bilayer
8

Similar Publications

Novel thermosensitive small multilamellar lipid nanoparticles with promising release characteristics made by dual centrifugation.

Eur J Pharm Sci

December 2024

Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany; Andreas Hettich GmbH, 78532 Tuttlingen, Germany. Electronic address:

Thermosensitive liposomes (TSLs) have great potential for the selective delivery of cytostatic drugs to the tumor site with greatly reduced side effects. Here we report the discovery and characterization of new thermosensitive small multilamellar lipid nanoparticles (tSMLPs) with unusually high temperature selectivity. Furthermore, the temperature-dependent release of the fluorescent marker calcein from tSMLPs is enhanced by human serum albumin.

View Article and Find Full Text PDF

Independent methods show that sub-microMolar concentrations of perfluorooctanoic acid (PFOA), a member of the PFAS family of "forever chemicals", change the properties of DPPC vesicle bilayers. Specifically, calorimetry measurements show that PFOA at concentrations as low as 0.1 nM lowers DPPC's gel-liquid crystalline transition enthalpy by several J/g without changing the transition temperature (), and dynamic light scattering (DLS) data illustrate that PFOA markedly broadens the size distribution of DPPC vesicles.

View Article and Find Full Text PDF

In the aim of designing and developing a novel saponin-based adjuvant system, we combined the QS21 saponin with low microgram amounts of the fully synthetic TLR4 agonist, E6020, in cholesterol-containing liposomes. The resulting adjuvant system, termed SPA14, appeared as a long-term stable and homogeneous suspension of mostly unilamellar and a few multilamellar vesicles, with an average hydrodynamic diameter of 93 nm, when formulated in citrate buffer at pH 6.0-6.

View Article and Find Full Text PDF

Lamellarity of ultrasound assisted formations of dipalmitoyl-lecithin vesicles.

Ultrason Sonochem

January 2025

Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Magyar tudósok körútja 2, 1117 Budapest, Hungary.

Formation of unilamellae of fully hydrated dipalmitoylphosphatidylcholine (DPPC) was induced by a horn sonicator from multilamellar vesicles and followed by time-resolved synchrotron small angle X-ray scattering and direct visual morphological investigations by the means of transmission electron-microscopy combined with freeze-fracture. Without incubation the ultrasonication causes continuous increasing in temperature and transformation from the gel to rippled gel structures, then reaching the main transition, the formfactor of unilamellar structure appeared. The ultrasonication resulted in different layer formations at the characteristic temperatures of the gel (20 °C), rippled gel (38 °C), and liquid crystalline (45 °C) phases of the system.

View Article and Find Full Text PDF

Background: Effective topical delivery of large/charged molecules into skin has always been challenging. Chemical penetration enhancers, organic substances that increase permeability of skin, have been in use for decades with variable success. One application of enhancers involves multilamellar vesicles composed of submicron emulsion droplets and micelles surrounded by concentric phospholipid bilayers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!