Controlling the nucleation of ice is important in many areas including atmospheric sciences, cryopreservation, food science, and infrastructure protection. Presently, we conduct controlled experiments and analysis to uncover the influence of surface chemistry at the three-phase line on ice nucleation. We show that ice nucleation is faster upon replacing the air at the water-air interface with oils like silicone oil and almond oil. We show via statistically meaningful and carefully designed experiments that ice nucleation occurs at a higher temperature at an aluminum-water-silicone oil (or almond oil) interface as compared to an aluminum-water-air interface. We show that the location of ice nucleation can be controlled (in situations with multiple locations for ice nucleation) by controlling the interfacial chemistry at the three-phase line. We develop a model (which utilizes classical nucleation theory) to study the combined influence of two interfaces on a seed crystal of ice originating at the three-phase contact line. This model can evaluate the thermodynamic competition between nucleation at the three -phase line and heterogeneous nucleation at an interface. The model shows that three-phase contact lines usually result in a higher driving force than heterogeneous nucleation, which speeds up nucleation kinetics. Overall, our experiments and modeling uncover several useful insights into the influence of three-phase lines on nucleation during contact freezing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.1c02044 | DOI Listing |
J Am Chem Soc
January 2025
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Kowloon 999077, China.
Heterogeneous ice nucleation is a widespread phenomenon in nature. Despite extensive research on ice nucleation near biological antifreeze proteins, a probe for ice nucleation and growth processes at the atomic level is still lacking. Herein, we present simulation evidence of the heterogeneous ice nucleation process on the ice-binding surface (IBS) of the antifreeze protein (TmAFP).
View Article and Find Full Text PDFVet Res Commun
January 2025
Faculty of Agriculture, University Farm, Utsunomiya University, Tochigi, 321-4415, Japan.
The purpose of this study was to improve the quality of frozen-thawed canine spermatozoa through the optimization of glycerol concentration (GC) and freezing rate in the semen freezing protocol. Ejaculates from nine dogs were diluted with an extender containing 0%, 1.5%, 3%, 6%, or 9% glycerol.
View Article and Find Full Text PDFJ Food Sci
January 2025
Department of Human Nutrition, Food, and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA.
Freezing extends the shelf life of foods but often leads to structural damage due to ice crystal formation, negatively impacting quality attributes. Oscillating magnetic field (OMF)-assisted supercooling has emerged as a potential technique to overcome these limitations by inhibiting ice nucleation and maintaining foods in a supercooled state. Despite its potential, the effectiveness and underlying mechanisms of OMF-assisted supercooling remain subjects of debate.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China. Electronic address:
Slurry ice preparation experiences considerable supercooling, which can be mitigated by nano-nucleating agents. A nano-nucleating agent (CH/PE-TP NPs) was prepared by ultrasonication-assistant self-assembly of chitosan (CH) and pectin (PE), encapsulated with tea polyphenols (TP). Ultrasonication for 10 min downsized self-assembled aggregates from 5.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Biochemical Engineering, School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China.
Organisms that survive at freezing temperatures produce antifreeze proteins (AFPs) to manage ice nucleation and growth. Inspired by AFPs, a series of synthetic materials have been developed to mimic these proteins in order to avoid the limitations of natural AFPs. Despite their great importance in various antifreeze applications, the relationship between structure and performance of AFP mimics remains unclear, especially whether their molecular charge-specific effects on ice inhibition exist.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!