Compare efficacies of deflazacort and prednisone/prednisolone in providing clinically meaningful delays in loss of physical milestones in patients with nonsense mutation Duchenne muscular dystrophy. Placebo data from Phase IIb (ClinicalTrials.gov Identifier: NCT00592553) and ACT DMD (ClinicalTrials.gov Identifier: NCT01826487) ataluren nonsense mutation Duchenne muscular dystrophy clinical trials were retrospectively combined in meta-analyses (intent-to-treat population; for change from baseline to week 48 in 6-min walk distance [6MWD] and timed function tests). Significant improvements in change in 6-min walk distance with deflazacort versus prednisone/prednisolone (least-squares mean difference 39.54 m [95% CI: 13.799, 65.286; p = 0.0026]). Significant and clinically meaningful improvements in 4-stair climb and 4-stair descend for deflazacort versus prednisone/prednisolone. Deflazacort provides clinically meaningful delays in loss of physical milestones over 48 weeks compared with prednisone/prednisolone for patients with nonsense mutation Duchenne muscular dystrophy.

Download full-text PDF

Source
http://dx.doi.org/10.2217/cer-2021-0018DOI Listing

Publication Analysis

Top Keywords

mutation duchenne
16
duchenne muscular
16
muscular dystrophy
16
deflazacort versus
12
versus prednisone/prednisolone
12
nonsense mutation
12
clinically meaningful
12
prednisone/prednisolone patients
8
patients nonsense
8
meaningful delays
8

Similar Publications

Objective: Duchenne muscular dystrophy (DMD) is a rare X-linked neurodegenerative disorder caused by mutations in the gene. This study examined the efficacy and safety of ataluren, the first oral treatment for DMD with nonsense mutations (nmDMD), in patients in the Middle East.

Methods: This retrospective longitudinal study assessed the outcomes of seven boys with nmDMD who received treatment with ataluren and follow-up at a single center since 2016.

View Article and Find Full Text PDF

The severity of brain comorbidities in Duchenne muscular dystrophy (DMD) depends on the mutation position within the DMD gene and differential loss of distinct brain dystrophin isoforms (i.e. Dp427, Dp140, Dp71).

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is caused by mutations in the gene encoding dystrophin, a subsarcolemmal protein whose absence results in increased susceptibility of the muscle fiber membrane to contraction-induced injury. This results in increased calcium influx, oxidative stress, and mitochondrial dysfunction, leading to chronic inflammation, myofiber degeneration, and reduced muscle regenerative capacity. Fast glycolytic muscle fibers have been shown to be more vulnerable to mechanical stress than slow oxidative fibers in both DMD patients and DMD mouse models.

View Article and Find Full Text PDF

Background And Objectives: Becker muscular dystrophy (BMD) is an allelic disorder of Duchenne muscular dystrophy (DMD) in which pathogenic variants in cause progressive worsening of motor dysfunction, muscle weakness and atrophy, and death due to respiratory and cardiac failure. BMD often has in-frame deletions that preserve the amino acid reading frame, but there are some cases with microvariants or duplications. In recent years, the importance of therapeutic development and care for BMD has been emphasized.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is associated with a range of cognitive and behavioral problems. Brain-related comorbidities show clinical heterogeneity depending on the position of the mutation within the multi-promoter dystrophin (DMD) gene, likely due to the differential impact of mutations on the expression of distinct brain dystrophins. A deficiency of the full-length brain dystrophin, Dp427, has been associated with enhanced stress reactivity, characterized by abnormal fear responses in both patients and mdx mouse model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!