Hierarchical FeO(OH)-CoCeV (Oxy)hydroxide as a Water Cleavage Promoter.

ACS Appl Mater Interfaces

Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India.

Published: November 2021

The search for a bifunctional electrocatalyst having water cleavage promoting ability along with the operational stability to efficiently generate oxygen and hydrogen could lead to robust systems for applications. These fundamental ideas can be achieved by designing the morphology, tuning the electronic structure, and using dopants in their higher oxidation states. Herein, we have fabricated a binder-free FeO(OH)-CoCeV-layered triple hydroxide (LTH) bifunctional catalyst by a two-step hydrothermal method, in which the nanograin-shaped FeO(OH) coupled with CoCeV-LTH nanoflakes provides more electrocatalytically active sites and enhances the charge-transfer kinetics for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The composition-optimized electrocatalyst (FeO(OH)-CoCeV-LTH) acts as an efficient water cleavage composite by virtue of its favorable oxidation states leading to cyclic redox couples, which yields an overpotential of 53 mV for HER and 227 mV for OER to drive 10 mA/cm current density in 1 M KOH with a corresponding Tafel slope of 70 mV/dec for HER and 52 mV/dec for OER. Furthermore, for the overall water splitting reaction, the heterostructure FeO(OH)-CoCeV-LTH acts as a dual-functional electrocatalyst, which requires a cell voltage of 1.52 V versus RHE to drive 10 mA/cm current density.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c17470DOI Listing

Publication Analysis

Top Keywords

water cleavage
12
oxidation states
8
evolution reaction
8
feooh-cocev-lth acts
8
drive ma/cm
8
ma/cm current
8
current density
8
hierarchical feooh-cocev
4
feooh-cocev oxyhydroxide
4
water
4

Similar Publications

The reduction of CO2 to CO provides a promising approach to the production of valuable chemicals through CO2 utilization. However, challenges persist with the rapid deactivation and insufficient activity of catalysts. Herein, we developed a soft-hard dual-template method to synthesize layered MoS2 using inexpensive and scalable templates, enabling facile regulation of sulfur vacancies by controlling the number of layers.

View Article and Find Full Text PDF

Inserted-B atoms modulating electronic structure of Pt enhancing hydrogen evolution under Universal-pH.

J Colloid Interface Sci

January 2025

College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108 China. Electronic address:

The development of high-performance electrocatalysts for hydrogen evolution reaction (HER) in different pH conditionsis pivotal in producing green hydrogen, but remains challenging. Herein, we regulate the p-d orbitals hybridization between B and Pt for effective and durable HER at all pH ranges by controlling the inserted B atom. Consequently, the optimized B-doped Pt catalysts with 20 at.

View Article and Find Full Text PDF

QM/MM study reveals novel mechanism of KRAS and KRAS catalyzed GTP hydrolysis.

Int J Biol Macromol

January 2025

Faculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China. Electronic address:

As a crucial drug target, KRAS can regulate most cellular processes involving guanosine triphosphate (GTP) hydrolysis. However, the mechanism of GTP hydrolysis has remained controversial over the past decades. Here, several different GTP hydrolysis mechanisms catalyzed by wild-type KRAS (WT-KRAS) and KRAS mutants were discussed via four QM/MM calculation models.

View Article and Find Full Text PDF

The bifunctional mechanism, involving multiactive compositions to simultaneously dissociate water molecules and optimize intermediate adsorption, has been widely used in the design of catalysts to boost water electrolysis for sustainable hydrogen energy production but remains debatable due to difficulties in accurately identifying the reaction process. Here, we proposed the concept of well-defined Lewis pairs in single-atom catalysts, with a unique acid-base nature, to comprehensively understand the exact role of multiactive compositions in an alkaline hydrogen evolution reaction. By facilely adjusting active moieties, the induced synergistic effect between Lewis pairs (M-P/S/Cr pairs, M = Ru, Ir, Pt) can significantly facilitate the cleavage of the H-OH bond and accelerate the removal of intermediates, thereby switching the rate-determining step from the Volmer step to the Heyrovsky step.

View Article and Find Full Text PDF

CeO2 Modification Promotes the Oxidation Kinetics for Adipic Acid Electrosynthesis from KA Oil Oxidation at 200 mA cm-2.

Angew Chem Int Ed Engl

January 2025

Tianjin University, Department of Chemistry, #92, Weijin Road, Nankai District, Department of Chemistry, School of Science, Tianjin University, 300072, Tianjin, CHINA.

Electrocatalytic oxidation of cyclohexanol/cyclohexanonein water provides a promising strategy for obtaining adipic acid (AA), which is an essential feedstock in the polymer industry. However, this process is impeded by slow kinetics and limited Faradaic efficiency (FE) due to a poor understanding of the reaction mechanism. Herein, NiCo2O4/CeO2 is developed to enable the electrooxidation of cyclohexanol to AA with a 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!