A novel Co/Ni bimetallic nanoparticle supported by nitrogen-doped porous carbon (NPC), Co/Ni@NPC-700, exhibits high conversion, chemoselectivity, and recyclability in the hydrogenation of 16 different nitro compounds into desired amines with hydrazine hydrate under mild conditions. The synergistic effects of Co/Ni bimetal nanoparticles and the NPC-supported porous honeycomb structure with more accessible active sites may be responsible for the high catalytic hydrogenation performance.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.1c02740DOI Listing

Publication Analysis

Top Keywords

hydrogenation nitro
8
nitro compounds
8
nitrogen-doped porous
8
co/ni bimetallic
8
highly efficient
4
efficient chemoselective
4
chemoselective hydrogenation
4
compounds amines
4
amines nitrogen-doped
4
porous carbon-supported
4

Similar Publications

The initial decomposition reactions of 1,3,5-trinitrobenzene (TNB), picric acid (PA), 2,4,6-trinitrotoluene (TNT), 2,4,6-trinitroaniline (TNA) and 2,4,6-trinitrophenylmethylnitramine (Tetryl) were studied using ReaxFF-lg molecular dynamics simulations, and the substituent effect on the thermal decomposition behaviours of nitrobenzene compounds was evaluated through the reactant number, initial decomposition pathway, products and cluster analysis. The results show that the introduction of substituents could promote the decomposition of the reactants, increase the frequency of the nitro-nitrito isomerization reaction and intermolecular H or O atom transfer reaction, and reduce the frequency of the direct nitro dissociation reaction. Notably, these effects were most obvious in the case of TNT.

View Article and Find Full Text PDF

Phthalocyanine nickel enhanced composite solid-state electrolytes with homogenous and fast Li-ion conduction for high-voltage Li-metal batteries.

J Colloid Interface Sci

December 2024

Key Laboratory of New Energy Development and Energy Storage Technology of Handan, College of Materials Science and Engineering, Hebei University of Engineering, Handan 056038, People's Republic of China.

Herein, a novel composite solid-state polymer electrolytes (CSEs) was regulated by introducing CoNi-MOF (Metal-organic framework) @NiPc (Nickel phthalocyanine) nanofiller (CMN) into PEO (polyethylene oxide) matrix. In this novel system, the NiPc uniformly wrapped around the surface of MOF through hydrogen bond bridging, avoiding the agglomeration of the MOF particles. The chemisorption between Ni in NiPc and the O atoms in the bis(triffuoromethanesulfonyl)imide anion (TFSI) restricted the mobility of the anions within the CSEs, which improved the release of Li ions from the NiPcLi.

View Article and Find Full Text PDF

Background: 6-Nitrodopamine (6-ND) released from rat vas deferens acts an endogenous modulator of vas deferens contractility.

Objectives: To investigate whether rat isolated seminal vesicles (RISV) releases 6-ND, the mechanisms involved in the release, and the modulatory role of 6-ND on tissue contractility.

Methods: Rat seminal vesicles were removed and placed in Krebs-Henseleit's solution at 37°C for 30 min, and an aliquot was used to analyze the concentrations of 6-ND, dopamine, noradrenaline, and adrenaline by liquid chromatography with tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

The cation of the title salt, CHNO ·Br, has a dihedral angle of 24.26 (6)° between its fused imidazole and 4-nitro-phenyl rings and the N-C-C-O torsion angle associated with the hy-droxy-ethyl substituent is 60.15 (17)°.

View Article and Find Full Text PDF

Crystal structure and Hirshfeld surface analysis of -(4-nitro-phen-yl)-2-(piperidin-1-yl)acetamide (lidocaine analogue).

Acta Crystallogr E Crystallogr Commun

January 2025

Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco.

In the title mol-ecule, CHNO, the substituents on the phenyl ring are rotated slightly out of the mean plane of the ring but the piperidine moiety is nearly perpendicular to that plane. In the crystal, C-H⋯O hydrogen bonds form chains of mol-ecules extending along the -axis direction, which are linked by C=O⋯π(ring) inter-actions. A Hirshfeld surface analysis showed the majority of inter-molecular inter-actions to be H⋯H contacts while O⋯H/H⋯O contacts are the second most numerous.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!