A122S, A205V, D376E, W574L and S653N substitutions in acetolactate synthase (ALS) from Amaranthus palmeri show different functional impacts on herbicide resistance.

Pest Manag Sci

Laboratorio de Biología Molecular, Universidad Nacional de Rosario, Campo Experimental Villarino, Zavalla, Argentina.

Published: February 2022

Background: Amaranthus palmeri S. Watson, a problematic weed infesting summer crops in Argentina, has developed multiple herbicide resistance. Resistance to acetolactate synthase (ALS)-inhibiting herbicides is particularly common, with high-level resistance mostly caused by different mutations in the ALS enzyme. Six versions of the enzyme were identified from a resistant A. palmeri population, carrying substitutions D376E, A205V, A122S, A282D, W574L and S653N. This work aims to provide a comparative analysis of these mutants and the wild-type (WT) enzyme to fully understand the herbicide resistance. Thus, all the versions of the ALS gene from A. palmeri were heterologously expressed and purified to evaluate their kinetics and inhibitory response against imazethapyr, diclosulam, chlorimuron-ethyl, flucarbazone-sodium and bispyribac-sodium.

Results: A decrease in catalytic efficiency was detected in the A205V, A122S-A282D, W574L and S653N ApALS enzymes, whereas only A205V and W574L substitutions also produced a decrease in the substrate affinity. In vitro ALS inhibition assays confirmed cross-resistance to almost all the herbicides tested, with the exception of A282D ApALS, which was as susceptible as WT ApALS. Moreover, the results confirmed that the novel substitution A122S provides cross-resistance to at least one herbicide within each of the five families of ALS inhibitors, and this property could be explained by a lower number of hydrophobic interactions between the herbicides and the mutant enzyme.

Conclusion: This is the first report to compare various mutations in vitro from A. palmeri ALS. Our data contribute to understanding the impacts of herbicide resistance in this species. © 2021 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.6688DOI Listing

Publication Analysis

Top Keywords

herbicide resistance
16
w574l s653n
12
acetolactate synthase
8
amaranthus palmeri
8
impacts herbicide
8
als
6
resistance
6
palmeri
5
herbicide
5
a122s a205v
4

Similar Publications

Orphan crops are important sources of nutrition in developing regions and many are tolerant to biotic and abiotic stressors; however, modern crop improvement technologies have not been widely applied to orphan crops due to the lack of resources available. There are orphan crop representatives across major crop types and the conservation of genes between these related species can be used in crop improvement. Machine learning (ML) has emerged as a promising tool for crop improvement.

View Article and Find Full Text PDF

Agricultural pollutants co-interact and affect the vital functions, stress tolerance, resistance, immunity, and survival of insect pests. These metal-herbicide interactions have inevitable but remarkable effects on insects, which remain poorly understood. Here, we examined the effects of the interactions among zinc (Zn), iron (Fe), and paraquat (PQ) at a sublethal dose on the physiological response of the Egyptian cotton leafworm .

View Article and Find Full Text PDF

The combination of auxin-mimicking herbicides from different chemical groups offers an alternative for controlling fleabane ( spp.) in soybean pre-sowing, but care is needed to avoid phytotoxicity. This study evaluated the effectiveness of auxinic herbicide mixtures in controlling spp.

View Article and Find Full Text PDF

Background: Ryegrass (Lolium spp.) is a key forage providing a $14 billion contribution to New Zealand's gross domestic product (GDP). However, ryegrass can also act as a weed and evolve resistance to herbicides used for its control.

View Article and Find Full Text PDF

Background: Herbicide cross-resistance is of increasing concern because it compromises the effectiveness of both existing and new chemical options. However, a common misconception is that if a weed population shows dose-response shifts to two herbicides, it is cross-resistant to both. The possibility that individual plants may possess different resistance mechanisms is often overlooked.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!