Host-directed therapy (HDT) is gaining traction as a strategy to combat infectious diseases caused by viruses and intracellular bacteria, but its implementation in the context of parasitic diseases has received less attention. Here, we provide a brief overview of this field and advocate HDT as a promising strategy for antimalarial intervention based on untapped targets. HDT provides a basis from which repurposed drugs could be rapidly deployed and is likely to strongly limit the emergence of resistance. This strategy can be applied to any intracellular pathogen and is particularly well placed in situations in which rapid identification of treatments is needed, such as emerging infections and pandemics, as starkly illustrated by the current COVID-19 crisis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8524702 | PMC |
http://dx.doi.org/10.1016/j.xcrm.2021.100423 | DOI Listing |
Int J Mol Sci
January 2025
Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Influenza A viruses (IAVs) are highly contagious pathogens that cause zoonotic disease with limited availability of antiviral therapies, presenting ongoing challenges to both public health and the livestock industry. Unveiling host proteins that are crucial to the IAV life cycle can help clarify mechanisms of viral replication and identify potential targets for developing alternative host-directed therapies. Using a four-dimensional (4D), label-free methodology coupled with bioinformatics analysis, we analyzed the expression patterns of cellular proteins that changed following H9N2 virus infection.
View Article and Find Full Text PDFMicroorganisms
January 2025
Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
Tuberculosis (TB) remains the major cause of mortality and morbidity, causing approximately 1.3 million deaths annually. As a highly successful pathogen, () has evolved numerous strategies to evade host immune responses, making it essential to understand the interactions between and host cells.
View Article and Find Full Text PDFCell Rep Med
January 2025
Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China. Electronic address:
Non-tuberculous mycobacterial pulmonary disease (NTM-PD) is a chronic progressive lung disease that is increasing in incidence. Host genetic factors are associated with NTM-PD susceptibility. However, the heritability of NTM-PD is not well understood.
View Article and Find Full Text PDFMol Biomed
January 2025
Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China.
Tuberculosis (TB) remains a prominent global health challenge, with the World Health Organization documenting over 1 million annual fatalities. Despite the deployment of the Bacille Calmette-Guérin (BCG) vaccine and available therapeutic agents, the escalation of drug-resistant Mycobacterium tuberculosis strains underscores the pressing need for more efficacious vaccines and treatments. This review meticulously maps out the contemporary landscape of TB vaccine development, with a focus on antigen identification, clinical trial progress, and the obstacles and future trajectories in vaccine research.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 140306, India.
Tuberculosis (TB) triggers a robust immune response, which leads to significant destruction of the lung tissue at the site of infection, aiding in the transmission of (Mtb) to the hosts. The excessive inflammatory response contributes heavily to extracellular matrix (ECM) damage, which is linked to high mortality rates among TB patients. Matrix metalloproteinases (MMPs), particularly MMP-2 and MMP-9, are pivotal in the breakdown of the ECM, worsening tissue destruction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!