AI Article Synopsis

  • Physiological circadian rhythms are essential for maintaining bone health, and disruptions in these rhythms can lead to issues like osteoporosis.
  • Research in animals shows that genes related to the body's internal clock have significant effects on bone structure and quality, and similar patterns are observed in humans.
  • This review highlights current findings on how bone remodeling follows a circadian pattern, identifies gaps in understanding, and suggests new treatment approaches based on this knowledge to combat osteoporosis.

Article Abstract

Physiological circadian (ie, 24-hour) rhythms are critical for bone health. Animal studies have shown that genes involved in the intrinsic molecular clock demonstrate potent circadian expression patterns in bone and that genetic disruption of these clock genes results in a disturbed bone structure and quality. More importantly, circulating markers of bone remodeling show diurnal variation in mice as well as humans, and circadian disruption by, eg, working night shifts is associated with the bone remodeling disorder osteoporosis. In this review, we provide an overview of the current literature on rhythmic bone remodeling and its underlying mechanisms and identify critical knowledge gaps. In addition, we discuss novel (chrono)therapeutic strategies to reduce osteoporosis by utilizing our knowledge on circadian regulation of bone. © 2021 The Authors. published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8520066PMC
http://dx.doi.org/10.1002/jbm4.10504DOI Listing

Publication Analysis

Top Keywords

bone remodeling
12
bone
8
chronobiology chronotherapy
4
chronotherapy osteoporosis
4
osteoporosis physiological
4
circadian
4
physiological circadian
4
circadian 24-hour
4
24-hour rhythms
4
rhythms critical
4

Similar Publications

Unlabelled: Uremic leontiasis ossia (ULO) is a rare manifestation of renal osteodystrophy in) patients with end-stage chronic kidney disease (CKD) and secondary hyperparathyroidism (SHPTH). It occurs due to increased osteoclastic activity secondary to high plasmatic parathyroid hormone (PTH) levels. This leads to bone deformation with thickening and massive enlargement of the cranial vault, resulting in a leonine face appearance.

View Article and Find Full Text PDF

Heavy mechanical force decelerates orthodontic tooth movement via Piezo1-induced mitochondrial calcium down-regulation.

Genes Dis

March 2025

College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.

Orthodontic tooth movement (OTM) depends on periodontal ligament cells (PDLCs), which sense biomechanical stimuli and initiate alveolar bone remodeling. Light (optimal) forces accelerate OTM, whereas heavy forces decelerate it. However, the mechanisms by which PDLCs sense biomechanical stimuli and affect osteoclastic activities under different mechanical forces (MFs) remain unclear.

View Article and Find Full Text PDF

Optimization of the density-elasticity relationship for rabbit hindlimb bones.

J Mech Behav Biomed Mater

January 2025

Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada; Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.

The rabbit is a popular experimental model in orthopaedic biomechanics due to the presence of natural Haversian remodeling, allowing for better translational relevance to the mechanobiology of human bone over traditional rodent models. Although rabbits are often used with computational modeling approaches such as the finite element (FE) method, a validated and widely agreed upon density-elasticity relationship, which is required to make subject-specific predictions, does not exist. Therefore, the purpose of this study was to determine and validate an accurate density-elasticity relationship for rabbit hindlimb bones using mathematical optimization.

View Article and Find Full Text PDF

Background: Selective androgen receptor modulators (SARMs) are small-molecule compounds that exert agonist and antagonist effects on androgen receptors in a tissue-specific fashion. Because of their performance-enhancing implications, SARMs are increasingly abused by athletes. To date, SARMs have no Food and Drug Administration approved use, and recent case reports associate the use of SARMs with deleterious effects such as drug-induced liver injury, myocarditis, and tendon rupture.

View Article and Find Full Text PDF

Chrysoeriol: a natural RANKL inhibitor targeting osteoclastogenesis and ROS regulation for osteoporosis therapy.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China.

Chrysoeriol (CHE) is a naturally occurring compound with established anti-inflammatory and anti-tumor effects. This study examines its potential role in regulating osteoclast differentiation and activity, both of which are crucial for bone remodeling. Computational docking revealed high binding affinity between CHE and RANKL, specifically at the Lys-181 residue of RANKL, suggesting potential inhibitory interactions on osteoclastogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!