In this work, an alternative flame-retardant filler based on phosphate- and urea-grafted bamboo charcoal (BC-m) at 10-30 wt % addition was aimed at improving the flame retardancy of polylactic acid (PLA) composites. The filler caused only a small reduction in strength properties but a slight increase in the modulus of elasticity of PLA composites. BC-m significantly improved the flame-retardant performance compared with pure BC. The limiting oxygen index (LOI) was 28.0 vol % when 10 wt % of BC-m was added, and 32.1 vol % for 30 wt % addition, which was much greater than the value of 22.5 vol % for 30 wt % pure BC. Unlike pure BC, adding BC-m at 20 wt % or more gave a UL-94 vertical flame test rating of V-0 with significantly reduced melt dripping. The peak heat release rate (pHRR) and total heat release (THR) of BC-m/PLA composites decreased by more than 50% compared with pure PLA, and the values for 20% BC-m were significantly less than that for 25% BC addition. The grafted biochar-based system provides an effective flame retardancy effect by a condensed-phase protective barrier through the rapid formation of a dense, honeycomb-like cross-linked carbonized char layer. The results suggest a promising route to enhancing the flame-retardant properties of biodegradable polymer composites using nontoxic, more environmentally friendly grafted biochar.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8529600 | PMC |
http://dx.doi.org/10.1021/acsomega.1c03393 | DOI Listing |
Foods
January 2025
Center of Excellence Polymer Processing, Faculty of Engineering, Dunarea de Jos University of Galați, Domnească Street, No. 111, 800201 Galați, Romania.
Electrospinning is a versatile technique for obtaining nano/micro fibers which are able to significantly change the active properties of composite materials and bring in new dimensions to agri-food applications. Composite bio-based packaging materials obtained from whey proteins, functionalized with thyme essential oil (TEO) and reinforced by electrospun polylactic acid (PLA) fibers, represent a promising solution for developing new active food packaging using environmentally friendly materials. The aim of this study is to obtain and characterize one-side-active composite films covered with a PLA fiber mat: (i) WF/G1, WF/G2, and WF/G3 resulting from electrospinning with one needle at different electrospinning times of 90, 150, and 210 min, respectively, and (ii) WF/G4 obtained with two face-to-face needles after 210 min of electrospinning.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Fraunhofer Institute for Machine Tools and Forming Technology IWU, Nöthnitzer Straße 44, 01187 Dresden, Germany.
Using a newly developed tool head with an additional rotational axis and a wire feed, wires can be directly processed in the fused filament fabrication (FFF) process. Thus, electrical structures such as conductive paths, coils, heating elements, or sensors can be integrated into polymer parts. However, the accuracy of the wire deposition in curved sections of the print track is insufficient.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Fujian Special Equipment Inspection and Research Institute, Fuzhou 350008, China.
The escalating demand for sustainable materials has been fueling the rapid proliferation of the biopolymer market. Biodegradable polymers within natural habitats predominantly undergo degradation mediated by microorganisms. These microorganisms secrete enzymes that cleave long-chain polymers into smaller fragments for metabolic assimilation.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Industrial Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
This study explored the tensile and impact strength of polylactic acid (PLA) through the incorporation of sisal and coir fibers. Hybrid natural fiber composites were prepared using PLA as the matrix and sisal and coir fibers as the reinforcements. The hybrid composites were prepared with an internal mixer, followed by compression molding.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic.
The popularity of 3D printing technology is rapidly increasing worldwide. It can be applied to metals, ceramics, composites, hybrids, and polymers. Three-dimensional printing has the potential to replace conventional manufacturing technologies because it is cost effective and environmentally friendly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!