serovar Enteritidis ( Enteritidis) is a leading causative pathogen for food-borne gastroenteritis. During its course of infection, it confronts myriads of physiological barriers inside the host, such as nutrient deprivation, low micronutrient availability, and toxicity from bile salts, to promote bacterial survival and infection inside the host. The ability of the pathogen to overcome these stressful conditions determines the degree of virulence in the host. Therefore, assessment of the survival of a pathogen during different stress conditions, like glucose starvation, magnesium starvation, and bile stress, are important parameters to assess the virulence of the pathogen. Here, we describe protocols for estimating the survival of the pathogen during the above-mentioned stress conditions. We culture Enteritidis in an appropriate growth medium to a required O.D. and treat it with glucose starvation (M9 minimal culture medium containing 0.03% glucose), magnesium starvation (M9 minimal culture medium containing 20 µM MgSO), and bile stress (bacterial cells treated with 15% bile salts in Luria Bertani (LB) culture medium) conditions. The number of surviving bacteria is obtained after the treatment by calculating the colony-forming units (CFU) of the surviving pathogen obtained on LB agar plates at relevant time intervals. The experiments are performed in biological replicates, and statistical analysis is performed to validate the experimental findings. The methodology of these stress response assays is simple and can be adapted to study the pathogenesis and stress response in other relevant and culturable enteric pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8481020PMC
http://dx.doi.org/10.21769/BioProtoc.4157DOI Listing

Publication Analysis

Top Keywords

glucose starvation
12
bile stress
12
culture medium
12
starvation magnesium
8
starvation bile
8
inside host
8
bile salts
8
survival pathogen
8
stress conditions
8
magnesium starvation
8

Similar Publications

The extracellular matrix (ECM) and its primary chemical components, including collagen, play a pivotal role in carcinogenesis and tumor progression. The ECM actively regulates cell proliferation, migration, and, importantly, resistance to various adverse factors. It is widely recognized as a key factor in modifying the resistance of tumor cells to various treatment modalities and cytotoxic compounds.

View Article and Find Full Text PDF

Exogenous glucose oxidation is reduced 55% during aerobic exercise after three days of complete starvation. Whether energy deficits more commonly experienced by athletes and military personnel similarly affect exogenous glucose oxidation and what impact this has on physical performance remains undetermined. This randomized, longitudinal parallel study aimed to assess the effects of varying magnitudes of energy deficit (DEF) on exogenous glucoseoxidation and physical performance compared to energy balance (BAL).

View Article and Find Full Text PDF

Ligand engineering boosts catalase-like activity of gold nanoclusters for cascade reactions combined with glucose oxidase in ZIF-8 matrix.

Anal Chim Acta

February 2025

Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China. Electronic address:

Background: Integrating natural enzymes and nanomaterials exhibiting tailored enzyme-like activities is an effective strategy for the application of cascade reactions. It is essential to develop a highly efficient and robust glucose oxidase-catalase (GOx-CAT) cascade system featuring controllable enzyme activity, a reliable supply of oxygen, and improved stability for glucose depletion in cancer starvation therapy. However, the ambiguous relationship between structure and performance, and the difficulty in controlling enzyme-mimic activity, significantly hinder their broader application.

View Article and Find Full Text PDF

Self-Sustained Biophotocatalytic Nano-Organelle Reactors with Programmable DNA Switches for Combating Tumor Metastasis.

Adv Mater

January 2025

Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China.

Metastasis, the leading cause of mortality in cancer patients, presents challenges for conventional photodynamic therapy (PDT) due to its reliance on localized light and oxygen application to tumors. To overcome these limitations, a self-sustained organelle-mimicking nanoreactor is developed here with programmable DNA switches that enables bio-chem-photocatalytic cascade-driven starvation-photodynamic synergistic therapy against tumor metastasis. Emulating the compartmentalization and positional assembly strategies found in living cells, this nano-organelle reactor allows quantitative co-compartmentalization of multiple functional modules for the designed self-illuminating chemiexcited PDT system.

View Article and Find Full Text PDF

Mitochondria and the Repurposing of Diabetes Drugs for Off-Label Health Benefits.

Int J Mol Sci

January 2025

Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.

This review describes our current understanding of the role of the mitochondria in the repurposing of the anti-diabetes drugs metformin, gliclazide, GLP-1 receptor agonists, and SGLT2 inhibitors for additional clinical benefits regarding unhealthy aging, long COVID, mental neurogenerative disorders, and obesity. Metformin, the most prominent of these diabetes drugs, has been called the "Drug of Miracles and Wonders," as clinical trials have found it to be beneficial for human patients suffering from these maladies. To promote viral replication in all infected human cells, SARS-CoV-2 stimulates the infected liver cells to produce glucose and to export it into the blood stream, which can cause diabetes in long COVID patients, and metformin, which reduces the levels of glucose in the blood, was shown to cut the incidence rate of long COVID in half for all patients recovering from SARS-CoV-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!