AI Article Synopsis

  • Coronary heart disease (CHD) is a complex condition influenced by exosomes, and this study aims to identify specific genes related to its development and prognosis by analyzing samples from CHD patients and healthy individuals.
  • Using various analytical methods, the research identified 715 significant exosome genes, with key functions linked to inflammatory responses and immune activities, particularly highlighting hub genes like LYZ and CAMP.
  • The study also noted distinct differences in immune cell profiles between CHD patients and controls, suggesting that immune responses, particularly involving neutrophils, play a critical role in the disease.

Article Abstract

Background: Coronary heart disease (CHD) is the most prevalent disease with an unelucidated pathogenetic mechanism and is mediated by complex molecular interactions of exosomes. Here, we aimed to identify differentially expressed exosome genes for the disease development and prognosis of CHD.

Method: Six CHD samples and 32 normal samples were downloaded from the exoRbase database to identify the candidate genes in the CHD. The differentially expressed genes (DEGs) were identified. And then, weighted gene correlation network analysis (WGCNA) was used to investigate the modules in coexpressed genes between CHD samples and normal samples. DEGs and the module of the WGCNA were intersected to obtain the most relevant exosome genes. After that, the function enrichment analyses and protein-protein interaction network (PPI) were performed for the particular module using STRING and Cytoscape software. Finally, the CIBERSORT algorithm was used to analyze the immune infiltration of exosome genes between CHD samples and normal samples.

Result: We obtain a total of 715 overlapping exosome genes located at the intersection of the DEGs and key modules. The Gene Ontology enrichment of DEGs in the blue module included inflammatory response, neutrophil degranulation, and activation of CHD. In addition, protein-protein networks were constructed, and hub genes were identified, such as LYZ, CAMP, HP, ORM1, and LTF. The immune infiltration profiles varied significantly between normal controls and CHD. Finally, we found that mast cells activated and eosinophils had a positive correlation. B cell memory had a significant negative correlation with B cell naive. Besides, neutrophils and mast cells were significantly increased in CHD patients.

Conclusion: The underlying mechanism may be related to neutrophil degranulation and the immune response. The hub genes and the difference in immune infiltration identified in the present study may provide new insights into the diagnostic and provide candidate targets for CHD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8536412PMC
http://dx.doi.org/10.1155/2021/3440498DOI Listing

Publication Analysis

Top Keywords

exosome genes
16
chd samples
12
samples normal
12
genes chd
12
immune infiltration
12
chd
9
genes
9
coronary heart
8
heart disease
8
weighted gene
8

Similar Publications

Osteoarthritis is a degenerative disease of cartilage, and exosome derived from mesenchymal stem cells (MSCs) are considered promising for treating inflammatory musculoskeletal disorders, although their mechanisms are not fully understood. This study aimed to investigate the effects of exosomes derived from canine bone marrow mesenchymal stem cells (cBMSCs-Exos) on the expression of inflammatory factors and genes related cartilage matrix metabolism in IL-1β-induced canine chondrocytes. Canine BMSCs were isolated and characterized for surface markers and trilineage differentiation.

View Article and Find Full Text PDF

Gelatin methacryloyl @MP196/exos hydrogel induced neutrophil apoptosis and macrophage M2 polarization to inhibit periodontal bone loss.

Colloids Surf B Biointerfaces

December 2024

Department of Periodontology, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070,  PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China. Electronic address:

Objectives: Periodontitis is an inflammatory and destructive disease caused by dental plaque, which can result in the immune microenvironment disorders and loss of periodontal support tissue. In order to promote the restoration of local microenvironment stability, a functional biomaterial Gelatin methacryloyl @MP196/exos based on characteristics of disease occurrence is designed.

Methods: Transmission electron microscopy, nanosight particle tracking analysis and western blot analysis were applied to prove the presence of exos in GelMA@MP196/exos.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the most common form of liver cancer in humans, with an increasing incidence worldwide. The current study aimed to explore the molecular mechanisms that inhibit the proliferation of HepG2 cells, a hepatoblastoma-derived cell line. MSC-derived exosomes (UC-MSCs) were prepared with a median particle size (N50) of 135.

View Article and Find Full Text PDF

Exosome-derived miR-107 targeting caveolin-1 promotes gallstone progression by regulating the hepatobiliary cholesterol secretion pathway.

Biochem Pharmacol

December 2024

Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong Province, China. Electronic address:

Cholesterol gallstone is a disease with high incidence and quality of life. This study aimed to investigate the function of exosome-derived miRNA in gallstone formation and its related molecular mechanism. Exosomes were extracted and isolated from patients with gallbladder stones and age- and gender-matched healthy controls, and exosomal miRNA expression was compared between the two groups.

View Article and Find Full Text PDF

Background: Amniotic mesenchymal stem cells (AMSCs) have been demonstrated as effective in tissue repair and regeneration. Trophoblast dysfunction is associated with several types of pregnancy complications. The aim of this study is to investigate the effects of AMSCs on the biological activities of human trophoblasts, as well as their molecular mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!