A Survey for Machine Learning-Based Control of Continuum Robots.

Front Robot AI

Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR China.

Published: September 2021

Soft continuum robots have been accepted as a promising category of biomedical robots, accredited to the robots' inherent compliance that makes them safely interact with their surroundings. In its application of minimally invasive surgery, such a continuum concept shares the same view of robotization for conventional endoscopy/laparoscopy. Different from rigid-link robots with accurate analytical kinematics/dynamics, soft robots encounter modeling uncertainties due to intrinsic and extrinsic factors, which would deteriorate the model-based control performances. However, the trade-off between flexibility and controllability of soft manipulators may not be readily optimized but would be demanded for specific kinds of modeling approaches. To this end, data-driven modeling strategies making use of machine learning algorithms would be an encouraging way out for the control of soft continuum robots. In this article, we attempt to overview the current state of kinematic/dynamic model-free control schemes for continuum manipulators, particularly by learning-based means, and discuss their similarities and differences. Perspectives and trends in the development of new control methods are also investigated through the review of existing limitations and challenges.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8527450PMC
http://dx.doi.org/10.3389/frobt.2021.730330DOI Listing

Publication Analysis

Top Keywords

continuum robots
12
soft continuum
8
robots
6
control
5
continuum
5
survey machine
4
machine learning-based
4
learning-based control
4
control continuum
4
soft
4

Similar Publications

Sensorless model-based tension control for a cable-driven exosuit.

Wearable Technol

December 2024

Sensory Motor Systems Lab, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.

Cable-driven exosuits have the potential to support individuals with motor disabilities across the continuum of care. When supporting a limb with a cable, force sensors are often used to measure tension. However, force sensors add cost, complexity, and distal components.

View Article and Find Full Text PDF

Magnetic Ball Chain Robots for Cardiac Arrhythmia Treatment.

IEEE Trans Med Robot Bionics

November 2024

Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.

This paper introduces a novel magnetic navigation system for cardiac ablation. The system is formed from two key elements: a magnetic ablation catheter consisting of a chain of spherical permanent magnets; and an actuation system comprised of two cart-mounted permanent magnets undergoing pure rotation. The catheter design enables a large magnetic content with the goal of minimizing the footprint of the actuation system for easier integration with the clinical workflow.

View Article and Find Full Text PDF

Small-scale continuum robots hold promise for interventional diagnosis and treatment, yet existing models struggle to achieve small size, precise steering, and visualized functional treatment simultaneously, termed an "impossible trinity". This study introduces an optical fiber-based continuum robot integrated imaging, high-precision motion, and multifunctional operation abilities at submillimeter-scale. With a slim profile of 0.

View Article and Find Full Text PDF

Neural Network-Based Shape Analysis and Control of Continuum Objects.

Biomimetics (Basel)

December 2024

School of Mechanical Engineering and Automation, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.

Soft robots are gaining increasing attention in current robotics research due to their continuum structure. However, accurately recognizing and reproducing the shape of such continuum robots remains a challenge. In this paper, we propose a novel approach that combines contour extraction with camera reconstruction to obtain shape features.

View Article and Find Full Text PDF

Carbon nanorings (CNRs) serve as an ideal quantum system for novel electronic and magnetic properties. Although extensive theoretical studies utilizing molecular dynamics (MD) simulations have investigated the formation and structural characteristics of CNRs, systematically analyzing their properties across various toric sizes remains challenging due to the inherent complexity of this system. In this study, we introduce a novel finite element method, the Chebyshev-Ritz method, as an alternative approach to investigating the structural properties of CNRs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!