Metal-organic frameworks (MOFs) have been extensively used as modified materials of electrochemical sensors in the food industry and agricultural system. In this work, two kinds of copper-based MOFs (Cu-MOFs) with a two dimensional (2D) sheet-like structure and three dimensional (3D) octahedral structure for HO detection were synthesized and compared. The synthesized 2D and 3D Cu-MOFs were modified on the glassy carbon electrode to fabricate electrochemical sensors, respectively. The sensor with 3D Cu-MOF modification (HKUST-1/GCE) presented better electrocatalytic performance than the 2D Cu-MOF modified sensor in HO reduction. Under optimal conditions, the prepared sensor displayed two wide linear ranges of 2 μM-3 mM and 3-25 mM and a low detection limit of 0.68 μM. In addition, the 3D Cu-MOF sensor exhibited good selectivity and stability. Furthermore, the prepared HKUST-1/GCE was used for the detection of HO in milk samples with a high recovery rate, indicating great potential and applicability for the detection of substances in food samples. This work provides a convenient, practical, and low-cost route for analysis and extends the application range of MOFs in the food industry, agricultural and environmental systems, and even in the medical field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8530376 | PMC |
http://dx.doi.org/10.3389/fchem.2021.743637 | DOI Listing |
Sci Rep
January 2025
Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan, 81746-73441, Iran.
Biodiesel presents a sustainable alternative to fossil fuels, yet traditional homogeneous catalysts like sodium and potassium hydroxide face challenges with separation and reuse. Calcium oxide (CaO) is an effective heterogeneous catalyst for biodiesel production, but its chemical instability under reaction conditions restricts its long-term performance. This study introduces MOF-mediated synthesis (MOFMS) of heterogeneous catalysts, specifically CaO@ZnO and ZnO@CaO nanocomposites, from inexpensive and non-toxic metal salts and linkers in water.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Jinan University, Guangzhou 518037 China. Electronic address:
Microwave dynamic therapy (MWDT) destroy tumor cells using reactive oxygen species (ROS), but its effectiveness is limited by low ROS production and intracellular oxygen (O) availability. This study presents a novel strategy using manganese (II) ion (Mn) doped iron (Fe)-based metal-organic framework (Fe MOF) nanoparticles (NPs) to enhance both O generation and ROS production for improved MWDT. Incorporating Mn into Fe MOF narrows the bandgap from 0.
View Article and Find Full Text PDFAdv Colloid Interface Sci
January 2025
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang-Russia Joint Laboratory of Photo-Electro-Magnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
Microwave absorption materials (MAMs) gradually exhibit crucial applications in reducing electromagnetic wave (EMW) pollution, avoiding EMW information leakage, and solving radar stealth. Metal-organic frameworks (MOFs)-derived materials are flourishing in the domain of EMW absorption attributed to their especial structures, heteroatom doping and controllable components. Herein, various strategies to enhance the EMW absorption ability of MOFs-derived materials are outlined, covering structural design and compositional regulation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.
Mixed matrix membranes (MMMs) can significantly improve gas separation performance, but the type and state of the filler in the membrane matrix are key indicators for the development of MMMs. Therefore, in this work, 6FDA-DAM/ODA (1:1), metal-organic frameworks (MOFs) with different particle sizes (UiO-66 and UiO-66-NH) were synthesized, and then MOFs were doped into 6FDA-DAM/ODA to prepare MMMs. The effects of the dopant materials and their particle sizes on the gas separation performance of the membranes were investigated by testing the permeability of the MMMs to H, CO, CH, and N.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
City University of Hong Kong, Department of Physics and Materials Science, 83 Tat Chee Ave, Kowloon Tong, 999077, Hong Kong, HONG KONG.
Lithium metal batteries (LMBs) are regarded as the potential alternative of lithium-ion batteries due to their ultrahigh theoretical specific capacity (3860 mAh g-1). However, severe instability and safety problems caused by the dendrite growth and inevitable side reactions have hindered the commercialization of LMBs. To solve them, in this contribution, a design strategy of soluble lithiophilic covalent organic frameworks (COFs) is proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!