The broad use of two-photon microscopy has been enabled in part by Ti:Sapphire femtosecond lasers, which offer a wavelength-tunable source of pulsed excitation. Action spectra have thus been primarily reported for the tunable range of Ti:Sapphire lasers (∼700-1000 nm). However, longer wavelengths offer deeper imaging in tissue via reduced scattering and spectral dips in water absorption, and new generations of pulsed lasers offer wider tunable ranges. We present the peak molecular brightness spectra for eight Alexa Fluor dyes between 700-1300 nm as a first-order surrogate for action spectra measured with an unmodified commercial microscope, which reveal overlapping long-wavelength excitation peaks with potential for multiplexed excitation. We demonstrate simultaneous single-wavelength excitation of six spectrally overlapping fluorophores using either short (∼790 nm) or long (∼1090 nm) wavelengths, and that the newly characterized excitation peaks measured past 1000 nm offer improved photostability and enhanced fidelity of linear spectral unmixing at depth compared to shorter wavelengths.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8515958PMC
http://dx.doi.org/10.1364/BOE.433989DOI Listing

Publication Analysis

Top Keywords

peak molecular
8
molecular brightness
8
brightness spectra
8
lasers offer
8
action spectra
8
excitation peaks
8
excitation
5
two-photon peak
4
spectra
4
spectra reveal
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease that inflicts the elderly worldwide. Recent studies revealed the association of abnormal methylomic alterations in AD. However, a systematic and comprehensive study is needed to investigate the effects of methylomic changes on the molecular networks underpinning AD, in particular, in brain regions most vulnerable to AD neuropathology.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom.

Background: Frontotemporal dementia (FTD) and Progressive Supranuclear Palsy (PSP) have distinct molecular pathologies, with Tau and TDP43 aggregation, and distinct patterns of regional brain atrophy. However, they share the synaptotoxicity of protein aggregation, and neurotransmitter loss (including GABA), which contribute to clinical and neurophysiological similarities. Defining the relationships between synaptic loss, network physiology and cognition builds bridges between preclinical and clinical studies, and facilitates early phase trials.

View Article and Find Full Text PDF

Background: Bile acids (BA) are steroids regulating nutrient absorption, energy metabolism, and mitochondrial function, and serve as important signaling molecules with a role in the gut-brain axis. The composition of BAs in humans changes with diet type and health status, which is well documented with a few known bile acids. In this study, we leveraged a new BA-specific spectral library curated in the Dorrestein lab at UCSD to expand the pool of detected BAs in Alzheimer-related LC-MS/MS datasets and provide links to dietary profiles and AD markers.

View Article and Find Full Text PDF

Heterogeneous Cluster Energetics and Nonlinear Thermodynamic Response in Supercritical Fluids.

Phys Rev Lett

December 2024

Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA.

Microstructural heterogeneities arising from molecular clusters directly affect the nonlinear thermodynamic properties of supercritical fluids. We present a physical model to elucidate the relation between energy exchange and heterogeneous cluster dynamics during the transition from liquidlike to gaslike conditions. By analyzing molecular-dynamics data and employing physical principles, the model considers contributions from three key processes, namely, changing cluster density, cluster separation, and transfer of molecules between clusters.

View Article and Find Full Text PDF

In this study, a molecularly imprinted electrochemical sensor (MIECS) was constructed based on the combination of graphene quantum dots-gold nanoparticles (GQDs-AuNPs), molecular imprinting polymer (MIP), and electrochemical technology for the ultra-sensitive detection of 17β-estradiol (E). GQDs-AuNPs were synthesized and modified on the surface of glassy carbon electrodes (GCE). Safranine T was used as the functional monomer and E was the template molecule for self-assembly and electropolymerization, thus generating an MIP film on the electrode surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!