In this paper, terahertz (THz) pulsed spectroscopy and solid immersion microscopy were applied to study interactions between water vapor and tissue scaffolds-the decellularized bovine pericardium (DBP) collagen matrices, in intact form, cross-linked with the glutaraldehyde or treated by plasma. The water-absorbing properties of biomaterials are prognostic for future cell-mediated reactions of the recipient tissue with the scaffold. Complex dielectric permittivity of DBPs was measured in the 0.4-2.0 THz frequency range, while the samples were first dehydrated and then exposed to water vapor atmosphere with 80.0 ± 5.0% relative humidity. These THz dielectric measurements of DBPs and the results of their weighting allowed to estimate the adsorption time constants, an increase of tissue mass, as well as dispersion of these parameters. During the adsorption process, changes in the DBPs' dielectric permittivity feature an exponential character, with the typical time constant of =8-10 min, the transient process saturation at =30 min, and the tissue mass improvement by =1-3%. No statistically-relevant differences between the measured properties of the intact and treated DBPs were observed. Then, contact angles of wettability were measured for the considered DBPs using a recumbent drop method, while the observed results showed that treatments of DBP somewhat affects their surface energies, polarity, and hydrophilicity. Thus, our studies revealed that glutaraldehyde and plasma treatment overall impact the DBP-water interactions, but the resultant effects appear to be quite complex and comparable to the natural variability of the tissue properties. Such a variability was attributed to the natural heterogeneity of tissues, which was confirmed by the THz microscopy data. Our findings are important for further optimization of the scaffolds' preparation and treatment technologies. They pave the way for THz technology use as a non-invasive diagnosis tool in tissue engineering and regenerative medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8515980 | PMC |
http://dx.doi.org/10.1364/BOE.433216 | DOI Listing |
ACS Biomater Sci Eng
January 2025
College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
Valvular heart disease (VHD) poses a significant threat to human health, and the transcatheter heart valve replacement (THVR) is the best treatment for severe VHD. Currently, the glutaraldehyde cross-linked commercial bioprosthetic heart valves (BHVs) remain the first choice for THVR. However, the cross-linking by glutaraldehyde exhibits several drawbacks, including calcification, inflammatory reactions, and difficult endothelialization, which limits the longevity and applicability of BHVs.
View Article and Find Full Text PDFPurpose: The reconstruction of dura matter is a challenging problem for neurosurgeons. A number of materials for dural reconstruction have recently been developed, but some of them have poor biocompatibility, poor mechanical properties, and adverse effects. Bovine parietal peritoneum is a promising natural material for regenerative medicine and reconstructive surgery.
View Article and Find Full Text PDFIndian J Thorac Cardiovasc Surg
January 2025
Army Hospital R&R, Delhi, India.
Aim: To evaluate the short-term outcomes of Tissue Engineered Decellularized Bovine pericardium (Synkroscaff®) in congenital heart surgery as a prosthetic material.
Methodology: This is a prospective observational cohort study. SynkroScaff® was used as prosthetic material in cohort of successive patients under 18 years of age requiring cardiac surgery for congenital heart diseases.
ACS Omega
December 2024
Regenerative Biomaterials Laboratory, Department of Bioengineering, Faculty of Engineering, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey.
The extracellular matrix (ECM) of spinal meninge tissue closely resembles the wealthy ECM content of the brain and spinal cord. The ECM is typically acquired through the process of decellularizing tissues. Nevertheless, the decellularization process of the brain and spinal cord is challenging due to their high-fat content, in contrast to the spinal meninges.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
Valve replacement is the most effective means of treating heart valve diseases, and transcatheter heart valve replacement (THVR) is the hottest field at present. However, the durability of the commercial bioprosthetic valves has always been the limiting factor restricting the development of interventional valve technology. The chronic inflammatory reaction, calcification, and difficulty in endothelialization after the implantation of a glutaraldehyde cross-linked porcine aortic valve or bovine pericardium often led to valve degeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!