Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Energy harvesting devices that prosper in harsh environments are highly demanded in a wide range of applications ranging from wearable and biomedical devices to self-powered and intelligent systems. Particularly, over the past several years, the innovation of triboelectric nanogenerators (TENGs) that efficiently convert ambient kinetic energy of water droplets or wave power to electricity has received growing attention. One of the main bottlenecks for the practical implications of such devices originates from the fast degradation of the physiochemical properties of interfacial materials under harsh environments. To overcome these challenges, here we report the design of a novel slippery lubricant-impregnated porous surface (SLIPS) based TENG, referred to as SLIPS-TENG, which exhibits many distinctive advantages over conventional design including optical transparency, configurability, self-cleaning, flexibility, and power generation stability, in a wide range of working environments. Unexpectedly, the slippery and configurable lubricant layer not only serves as a unique substrate for liquid/droplet transport and optical transmission, but also for efficient charge transfer. Moreover, we show that there exists a critical thickness in the liquid layer, below which the triboelectric effect is almost identical to that without the presence of such a liquid film. Such an intriguing charge transparency behavior is reminiscent of the wetting transparency and van der Waals potential transparency of graphene previously reported, though the fundamental mechanism remains to be elucidated. We envision that the marriage of these two seemingly totally different arenas (SLIPS and TENG) provides a paradigm shift in the design of robust and versatile energy devices that can be used as a clean and longer-lifetime alternative in various working environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8291521 | PMC |
http://dx.doi.org/10.1093/nsr/nwz025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!