A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel nondelay-based reservoir computing with a single micromechanical nonlinear resonator for high-efficiency information processing. | LitMetric

Reservoir computing is a potential neuromorphic paradigm for promoting future disruptive applications in the era of the Internet of Things, owing to its well-known low training cost and compatibility with hardware. It has been successfully implemented by injecting an input signal into a spatially extended reservoir of nonlinear nodes or a temporally extended reservoir of a delayed feedback system to perform temporal information processing. Here we propose a novel nondelay-based reservoir computer using only a single micromechanical resonator with hybrid nonlinear dynamics that removes the usually required delayed feedback loop. The hybrid nonlinear dynamics of the resonator comprise a transient nonlinear response, and a Duffing nonlinear response is first used for reservoir computing. Due to the richness of this nonlinearity, the usually required delayed feedback loop can be omitted. To further simplify and improve the efficiency of reservoir computing, a self-masking process is utilized in our novel reservoir computer. Specifically, we numerically and experimentally demonstrate its excellent performance, and our system achieves a high recognition accuracy of 93% on a handwritten digit recognition benchmark and a normalized mean square error of 0.051 in a nonlinear autoregressive moving average task, which reveals its memory capacity. Furthermore, it also achieves 97.17 ± 1% accuracy on an actual human motion gesture classification task constructed from a six-axis IMU sensor. These remarkable results verify the feasibility of our system and open up a new pathway for the hardware implementation of reservoir computing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528836PMC
http://dx.doi.org/10.1038/s41378-021-00313-7DOI Listing

Publication Analysis

Top Keywords

reservoir computing
20
delayed feedback
12
reservoir
9
novel nondelay-based
8
nondelay-based reservoir
8
single micromechanical
8
extended reservoir
8
reservoir computer
8
hybrid nonlinear
8
nonlinear dynamics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!