Current barriers hindering data-driven discoveries in deep-time Earth (DE) include: substantial volumes of DE data are not digitized; many DE databases do not adhere to FAIR (findable, accessible, interoperable and reusable) principles; we lack a systematic knowledge graph for DE; existing DE databases are geographically heterogeneous; a significant fraction of DE data is not in open-access formats; tailored tools are needed. These challenges motivate the Deep-Time Digital Earth (DDE) program initiated by the International Union of Geological Sciences and developed in cooperation with national geological surveys, professional associations, academic institutions and scientists around the world. DDE's mission is to build on previous research to develop a systematic DE knowledge graph, a FAIR data infrastructure that links existing databases and makes dark data visible, and tailored tools for DE data, which are universally accessible. DDE aims to harmonize DE data, share global geoscience knowledge and facilitate data-driven discovery in the understanding of Earth's evolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433093 | PMC |
http://dx.doi.org/10.1093/nsr/nwab027 | DOI Listing |
Environ Pollut
December 2024
Nu Instruments, Wrexham Industrial Estate, 74 Clywedog Road South, Wrexham, LL13 9XS, United Kingdom.
Zinc (Zn) is an essential element for all living organisms, and Zn isotopes play a key role in studying the formation of disease. Despite extensive studies on Zn isotopes in healthy and diseased human tissues, the role of Zn isotopes in urinary stones remains unexplored. This study investigates Zn isotopes in 37 urinary stones using multi-collector inductively coupled plasma mass spectrometry.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Frontiers Science Center for Deep-time Digital Earth, State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.
Oxidation of the sub-arc mantle driven by slab-derived fluids has been hypothesized to contribute to the formation of gold deposits in magmatic arc environments that host the majority of metal resources on Earth. However, the mechanism by which the infiltration of slab-derived fluids into the mantle wedge changes its oxidation state and affects Au enrichment remains poorly understood. Here, we present the results of a numerical model that demonstrates that slab-derived fluids introduce large amounts of sulfate (S) into the overlying mantle wedge that increase its oxygen fugacity by up to 3 to 4 log units relative to the pristine mantle.
View Article and Find Full Text PDFJ Environ Manage
January 2025
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China; Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences (Beijing), Beijing, 100083, China. Electronic address:
Transportation and transformation of the dissolved inorganic carbon (DIC) play a critical role in the regional carbon cycle. To clarify the natural and anthropogenic impacts on DIC, the concentration and isotopic composition of DIC (δC) in two typical urban rivers in northern China (Yongding River, YDR, and Chaobai River, CBR) were measured. Mass-balanced calculations were employed to quantify the impacts of different weathering processes.
View Article and Find Full Text PDFSci Total Environ
January 2025
MWR Key Laboratory of Groundwater Conservation and School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China.
Anal Chem
December 2024
State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
The double spike (DS) technique is a highly effective approach for measuring the isotope ratios of many elements. However, it is common for some fraction of the prepared samples to be "overspiked." The usual solution for this problem involves repurifying and reanalyzing the samples to ensure data accuracy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!