Regenerated isotropic wood.

Natl Sci Rev

Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China.

Published: July 2021

Construction of sustainable high-performance structural materials is a core part of the key global sustainability goal. Many efforts have been made in this field; however, challenges remain in terms of lowering costs by using all-green basic building blocks and improving mechanical properties to meet the demand of practical applications. Here, we report a robust and efficient bottom-up strategy with micro/nanoscale structure design to regenerate an isotropic wood from natural wood particles as a high-performance sustainable structural material. Regenerated isotropic wood (RGI-wood) exceeds the limitations of the anisotropic and inconsistent mechanical properties of natural wood, having isotropic flexural strength of ∼170 MPa and flexural modulus of ∼10 GPa. RGI-wood also shows superior water resistance and fire retardancy properties to natural pine wood. Mass production of large sized RGI-wood and functional RGI-wood nanocomposites can also be achieved.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8310772PMC
http://dx.doi.org/10.1093/nsr/nwaa230DOI Listing

Publication Analysis

Top Keywords

isotropic wood
12
regenerated isotropic
8
mechanical properties
8
natural wood
8
properties natural
8
wood
6
wood construction
4
construction sustainable
4
sustainable high-performance
4
high-performance structural
4

Similar Publications

Probing the Self-Assembly dynamics of cellulose nanocrystals by X-ray photon correlation spectroscopy.

J Colloid Interface Sci

December 2024

Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden. Electronic address:

Hypothesis: Charge-stabilized colloidal cellulose nanocrystals (CNCs) can self-assemble into higher-ordered chiral nematic structures by varying the volume fraction. The assembly process exhibits distinct dynamics during the isotropic to liquid crystal phase transition, which can be elucidated using X-ray photon correlation spectroscopy (XPCS).

Experiments: Anionic CNCs were dispersed in propylene glycol (PG) and water spanning a range of volume fractions, encompassing several phase transitions.

View Article and Find Full Text PDF

Melting Behavior of Compression Molded Poly(ester amide) from 2,5-Furandicarboxylic Acid.

Polymers (Basel)

December 2024

Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.

PEA 46 is a biobased polymer with promising properties for sustainable packaging applications, which can be obtained via polymerization of a furan 2,5-dicarboxylic acid (2,5-FDCA) derivative and a diol monomer containing internal amide bonds (46 amido diol). In the literature, PEA 46 showed a complex series of thermal transitions during DSC scans. For this reason, in this initial exploratory study PEA 46 was subjected to compression molding and the melting behavior of film samples was investigated with parallel DSC and WAXS analyses.

View Article and Find Full Text PDF

Propagation of Orientation Across Lengthscales in Sheared Self-Assembling Hierarchical Suspensions via Rheo-PLI-SAXS.

Adv Sci (Weinh)

December 2024

Department of Industrial and Materials Science, Division of Engineering Materials, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.

Simultaneous rheological, polarized light imaging, and small-angle X-ray scattering experiments (Rheo-PLI-SAXS) are developed, thereby providing unprecedented level of insight into the multiscale orientation of hierarchical systems in simple shear. Notably, it is observed that mesoscale alignment in the flow direction does not develop simultaneously across nano-micro lengthscales in sheared suspensions of rod-like chiral-nematic (meso) phase forming cellulose nanocrystals. Rather, with increasing shear rate, orientation is observed first at mesoscale and then extends to the nanoscale, with influencing factors being the aggregation state of the hierarchy and concentration.

View Article and Find Full Text PDF

Effect of delignification on shrinking and swelling of poplar wood assessed using digital image correlation technique.

Int J Biol Macromol

December 2024

Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

This study investigates lignin's influence on the hygroscopic behavior of poplar wood. Delignification was achieved using an acidic NaClO solution, and digital image correlation (DIC) was employed to measure strain distribution during shrinking and swelling across relative humidity (RH) ranging of 0 % to 97 %. Results showed that lignin removal increased equilibrium moisture content (EMC) by up to 3.

View Article and Find Full Text PDF

Discovery of highly anisotropic dielectric crystals with equivariant graph neural networks.

Faraday Discuss

September 2024

Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, Wood Lane, London W12 0BZ, UK.

Anisotropy in crystals plays a pivotal role in many technological applications. For example, anisotropic electronic and thermal transport are thought to be beneficial for thermoelectric applications, while anisotropic mechanical properties are of interest for emerging metamaterials, and anisotropic dielectric materials have been suggested as a novel platform for dark matter detection. Understanding and tailoring anisotropy in crystals is therefore essential for the design of next-generation functional materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!