Precise fabrication of single-atom alloy co-catalyst with optimal charge state for enhanced photocatalysis.

Natl Sci Rev

Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.

Published: January 2021

While the surface charge state of co-catalysts plays a critical role for boosting photocatalysis, studies on surface charge regulation via their precise structure control remain extremely rare. Herein, metal-organic framework (MOF) stabilized bimetallic Pd@Pt nanoparticles, which feature adjustable Pt coordination environment and a controlled structure from core-shell to single-atom alloy (SAA), have been fabricated. Significantly, apart from the formation of a Mott-Schottky junction in a conventional way, we elucidate that Pt surface charge regulation can be alternatively achieved by changing its coordination environment and the structure of the Pd@Pt co-catalyst, where the charge between Pd and Pt is redistributed. As a result, the optimized Pd@Pt/MOF composite, which involves an unprecedented SAA co-catalyst, exhibits exceptionally high photocatalytic hydrogen production activity, far surpassing its corresponding counterparts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8288370PMC
http://dx.doi.org/10.1093/nsr/nwaa224DOI Listing

Publication Analysis

Top Keywords

surface charge
12
single-atom alloy
8
charge state
8
charge regulation
8
coordination environment
8
charge
5
precise fabrication
4
fabrication single-atom
4
alloy co-catalyst
4
co-catalyst optimal
4

Similar Publications

An interface can be delicately designed using interactions between nanoparticles and surfactants by controlling surface properties such as activity and charge equilibrium. This study seeks to provide insights into how surfactant concentration impacts the stability and dynamics of nanoparticle-surfactant interfaces, with potential applications in material science and interface engineering. This study investigates the interactions between Graphene Function (Gr, Graphene function in this text refers to functionalizing the graphene sheets with -COOH groups via acidic reactions.

View Article and Find Full Text PDF

This study focuses on the synthesis, characterization, and evaluation of the photocatalytic efficiency of bismuth-based metal-organic frameworks (Bi-MOFs) and their derivatives, specifically Ag/Bi-MOF and NH /Ag/Bi-MOF, in the degradation of tetracycline (TC) and sulfamethoxazole (SMX) under visible light irradiation. Bi-MOFs are promising photocatalysts due to their large surface area, tunable porosity, and unique electronic properties that are favorable for visible light absorption. In this study, Bi-MOFs were synthesized using a solvothermal method, with the incorporation of silver (Ag) and ammonium (NH ) ions to enhance their photocatalytic performance.

View Article and Find Full Text PDF

In this paper, Gd-doped ZrO gate dielectric films and metal-oxide-semiconductor (MOS) capacitors structured as Al/ZrGdO /Si were prepared using an ultraviolet ozone (UVO)-assisted sol-gel method. The effects of heat treatment temperature on the microstructure, chemical bonding state, optical properties, surface morphology and electrical characteristics of the ZrGdO composite films and MOS capacitors were systematically investigated. The crystalline phase of the ZrGdO films appeared only at 600 °C, indicating that Gd doping effectively inhibits the crystallization of ZrO films.

View Article and Find Full Text PDF

Time-resolved, rapid-scan Fourier transform infrared (FT-IR) difference spectra have been recorded upon illumination on photosynthetic reaction centers (RCs) from under fixed hydration conditions (relative humidity = 76%). Two different illumination schemes were adopted. Whereas the use of a laser flash (duration: 7 ns) made it possible to follow the kinetics of recombination of the light-induced state PQ to the neutral state PQ, the use of a 20.

View Article and Find Full Text PDF

This study examined the electrodissolution mechanism of five impure sphalerite samples, which differ significantly in purity levels, along with their partially oxidized counterparts in a 0.5 M HSO. Partially oxidized samples were prepared through an incomplete leaching of sphalerite using HSO with Fe(SO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!