A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Crystal face dependent intrinsic wettability of metal oxide surfaces. | LitMetric

Crystal face dependent intrinsic wettability of metal oxide surfaces.

Natl Sci Rev

Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW 2500, Australia.

Published: January 2021

Knowledge of intrinsic wettability at solid/liquid interfaces at the molecular level perspective is significant in understanding crucial progress in some fields, such as electrochemistry, molecular biology and earth science. It is generally believed that surface wettability is determined by the surface chemical component and surface topography. However, when taking molecular structures and interactions into consideration, many intriguing phenomena would enrich or even redress our understanding of surface wettability. From the perspective of interfacial water molecule structures, here, we discovered that the intrinsic wettability of crystal metal oxide is not only dependent on the chemical components but also critically dependent on the crystal faces. For example, the [Formula: see text] crystal face of α-AlO is intrinsically hydrophobic with a water contact angle near 90°, while another three crystal faces are intrinsically hydrophilic with water contact angles <65°. Based on surface energy analysis, it is found that the total surface energy, polar component and Lewis base portion of the hydrophobic crystal face are all smaller than the other three hydrophilic crystal faces indicating that they have different surface states. DFT simulation further revealed that the adsorbed interfacial water molecules on each crystal face hold various orientations. Herein, the third crucial factor for surface wettability from the perspective of the molecular level is presented, that is the orientations of adsorbed interfacial water molecules apart from the macro-level chemical component and surface topography. This study may serve as a source of inspiration for improving wetting theoretical models and designing controllable wettability at the molecular/atomic level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8288373PMC
http://dx.doi.org/10.1093/nsr/nwaa166DOI Listing

Publication Analysis

Top Keywords

intrinsic wettability
12
crystal face
8
metal oxide
8
surface wettability
8
crystal faces
8
water contact
8
crystal
5
wettability
5
face dependent
4
dependent intrinsic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!