Salvianolic Acid A Suppresses DNCB-Induced Atopic Dermatitis-Like Symptoms in BALB/c Mice.

Evid Based Complement Alternat Med

Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea.

Published: October 2021

Prevalence of atopic dermatitis (AD), a chronic, pruritic, and relapsing inflammatory skin disorder, is growing. Because available therapeutics is limited, immune regulators from natural resources could be helpful for treating AD symptoms. The root of Bunge (Lamiaceae) has been studied for the treatment of inflammatory diseases, including dermatologic disorders in Korea. This study examined the effect of salvianolic acid A on AD-like symptoms. Sensitization on the dorsal skin and repeated application on the ears with 2,4-dinitrochlorobenzene (DNCB) were performed in BALB/c mice to induce AD-like skin lesions. After induction of atopic dermatitis, salvianolic acid A (5 and 10 mg/kg) or dexamethasone (10 mg/kg) were administrated via intraperitoneal injection for 3 weeks. Salvianolic acid A suppressed DNCB-induced AD-like symptoms like ear skin hypertrophy and decreased mast cell infiltration into skin lesions. Salvianolic acid A not only reduced DNCB-induced increase of serum IgE but also lowered levels of the Th2 cytokines (IL-4 and IL-13), Th1 cytokine (interferon-), and Th17 cytokine (IL-17A). Furthermore, salvianolic acid A blocked DNCB-induced lymph node enlargement. In summary, these results suggest that salvianolic acid A might have a therapeutic potential for the treatment of AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8531767PMC
http://dx.doi.org/10.1155/2021/7902592DOI Listing

Publication Analysis

Top Keywords

salvianolic acid
28
balb/c mice
8
atopic dermatitis
8
ad-like symptoms
8
skin lesions
8
salvianolic
7
acid
6
skin
5
acid suppresses
4
dncb-induced
4

Similar Publications

Background: Salvianolic acid B (Sal B) is potentially the most valuable water-soluble active component in Salvia miltiorrhiza. Its chemical formula contains multiple phenolic hydroxyl groups, so it has a strong antioxidant capacity.

Objective: We aim to investigate the efficacy and the potential mechanism of Sal B in the treatment of acute ischemic stroke injury.

View Article and Find Full Text PDF

, the valuable traditional Chinese medicinal plant, has been used in clinics for thousands of years. The water-soluble salvianolic acid compounds are bioactive substances used in treating many diseases. Gibberellins (GAs) are growth-promoting phytohormones that regulate plant growth and development.

View Article and Find Full Text PDF

Purpose: Salvianolate for injection (SFI) is a widely used treatment for acute myocardial infarction (AMI). This study aims to assess the efficacy and safety of SFI in treating AMI by synthesizing evidence from published randomized controlled trials (RCTs).

Methods: Seven databases were searched for relevant RCTs published up to 1 July 2024.

View Article and Find Full Text PDF
Article Synopsis
  • Ferritin is an iron storage protein that could serve as a new type of iron supplement, but its function can be influenced by food components like phenolic acids.
  • The study found that salvianolic acid B (SalB) interacts with ferritin and iron ions primarily through hydrogen bonding and van der Waals forces, promoting iron oxidation while having a slower release rate compared to ascorbic acid.
  • The research highlights the potential use of SalB in improving the efficiency of ferritin as an iron supplement and emphasizes the importance of phenolic acids in food applications.
View Article and Find Full Text PDF

An electrostatic encapsulation strategy to motivate 3D-printed polyelectrolyte scaffolds for repair of osteoporotic bone defects.

Bioact Mater

April 2025

Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China.

Repair of osteoporotic bone defects (OBD) remains a clinical challenge due to dysregulated bone homeostasis, characterized by impaired osteogenesis and excessive osteoclast activity. While drug-loaded 3D-printed scaffolds hold great potential in the restoration of bone homeostasis for enhanced OBD repair, achieving the controlled release and targeted delivery of drugs in a 3D-printed scaffold is still unmet. Herein, we developed an electrostatic encapsulation strategy to motivate 3D-printed polyelectrolyte scaffolds (APS@P) with bone-targeting liposome formulation of salvianolic acid B (SAB-BTL).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!