The Hippo signaling pathway has been shown to be involved in regulating cellular identity, cell/tissue size maintenance and mechanotransduction. The Hippo pathway consists of a kinase cascade which determines the nucleo-cytoplasmic localization of YAP in the cell. YAP is the effector protein in the Hippo pathway, which acts as a transcriptional cofactor for TEAD. Phosphorylation of YAP upon activation of the Hippo pathway prevents it from entering the nucleus and abrogates its function in the transcription of the target genes. In Cnidaria, the information on the regulatory roles of the Hippo pathway is virtually lacking. Here, we report the existence of a complete set of Hippo pathway core components in Hydra for the first time. By studying their phylogeny and domain organization, we report evolutionary conservation of the components of the Hippo pathway. Protein modelling suggested the conservation of YAP-TEAD interaction in . Further, we characterized the expression pattern of the homologs of and in using whole-mount RNA hybridization and report their possible role in stem cell maintenance. Immunofluorescence assay revealed that _YAP expressing cells occur in clusters in the body column and are excluded in the terminally differentiated regions. Actively proliferating cells marked by Ki67 exhibit YAP colocalization in their nuclei. Strikingly, a subset of these colocalized cells is actively recruited to the newly developing bud. Disruption of the YAP-TEAD interaction increased the budding rate indicating a critical role of YAP in regulating cell proliferation in Collectively, we posit that the Hippo pathway is an essential signaling system in ; its components are ubiquitously expressed in the body column and play a crucial role in tissue homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8526868PMC
http://dx.doi.org/10.3389/fgene.2021.676182DOI Listing

Publication Analysis

Top Keywords

hippo pathway
32
hippo
9
pathway
9
components hippo
8
role yap
8
yap cell
8
yap-tead interaction
8
body column
8
yap
6
identification components
4

Similar Publications

Background: Acute aortic dissection is a lethal cardiovascular emergency; early diagnosis is critically necessary. Novel serum biomarkers can potentially help in early detection and estimation of postoperative outcomes. Yes-associated protein (YAP) is a critical effector of the Hippo pathway, our aim was to explore the association between YAP and the diagnosis and prognosis of AD.

View Article and Find Full Text PDF

The mechanism by which DNA-damage affects self-renewal and pluripotency remains unclear. DNA damage and repair mechanisms have been largely elucidated in mutated cancer cells or simple eukaryotes, making valid interpretations on early development difficult. Here we show the impact of ionizing irradiation on the maintenance and early differentiation of mouse embryonic stem cells (ESCs).

View Article and Find Full Text PDF

[Aggressive mucinous tubular and spindle cell carcinoma of the kidney: a clinicopathological and genetic analysis of four cases].

Zhonghua Bing Li Xue Za Zhi

January 2025

Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing100191, China.

To understand the clinicopathological and molecular genetic characteristics of aggressive renal mucinous tubular and spindle cell carcinoma (MTSCC). The clinical features, histology, immunophenotype, molecular characteristics and prognosis of 4 cases of metastatic/recurrent renal MTSCC that were submitted to the Peking University Third Hospital (2 cases), Institute of Urology, Peking University (one case) and Zhejiang Provincial People's Hospital (one case) from 2015 to 2020 were retrospectively reviewed and analyzed. Among the four patients, two were male and two were female.

View Article and Find Full Text PDF

circTP63-N suppresses the proliferation and metastasis of nasopharyngeal carcinoma via engaging with HSP90AB1 to modulate the YAP1/Hippo signaling pathway.

Sci China Life Sci

December 2024

NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China.

Circular RNAs (circRNAs) play pivotal roles in the development and progression of various diseases, including malignant tumors. However, the biological functions and the underlying mechanisms of many circRNAs remain elusive. In this study, we identified a novel circRNA, circTP63-N, generated through the splicing of exons 2-4 of the TP63 gene in nasopharyngeal carcinoma (NPC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!