The presence and dissemination of carbapenem-resistant (CRKP) often cause life-threatening infections worldwide, but the therapeutic option is limited. In this study, whole-genome sequencing (WGS) was applied to assess the epidemiological characteristics and transmission dynamics of CRKP isolates recovered from two fetal outbreaks of nosocomial infections. Between April 2016 and March 2018, a total of 70 isolates of were collected from sterile samples in a tertiary hospital in Hangzhou, China. The minimal inhibitory concentrations (MICs) of 21 antimicrobial agents were determined using the broth microdilution methods. Pulsed-field gel electrophoresis (PFGE) was performed on 47 CRKP isolates, and 16 clonally related isolates were further characterized by Illumina sequencing. In addition, the complete genome sequences of three representative isolates (KP12, KP36, and KP37) were determined by Oxford Nanopore sequencing. The isolates were recovered from patients diagnosed with pulmonary infection, cancer, or encephalopathy. For all CRKP isolates, PFGE separated three clusters among all strains. The most predominant PFGE cluster contained 16 isolates collected from patients who shared close hospital units and represented a potential outbreak. All 16 isolates showed an extremely high resistance level (≥87.5%) to 18 antimicrobials tested but remain susceptible to colistin (CST). Multiple antimicrobial resistance and virulence determinants, such as the carbapenem resistance gene , and genes encoding the virulence factor aerobactin and the regulator of the mucoid phenotype ( and ), were observed in the 16 CRKP isolates. These isolates belonged to sequence type 11 (ST11) and capsular serotype KL64. A core genome single nucleotide polymorphism (cgSNP)-based phylogenetic analysis indicated that the 16 CRKP isolates could be partitioned into two separate clades (≤15 SNPs), suggesting the two independent transmission scenarios co-occurred. Moreover, a high prevalence of IncFIB/IncHI1B type virulence plasmid with the locus deleted, and an IncFII/IncR type -bearing plasmid was co-harbored in ST11-KL64 CRKP isolates. In conclusion, our data indicated that the nosocomial dissemination of ST11-KL64 CRKP clone is a potential threat to anti-infective therapy. The development of novel strategies for surveillance, diagnosis, and treatment of this high-risk CRKP clone is urgently needed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8529244PMC
http://dx.doi.org/10.3389/fmicb.2021.736896DOI Listing

Publication Analysis

Top Keywords

crkp isolates
24
isolates
13
crkp
9
transmission dynamics
8
sequence type
8
isolates recovered
8
isolates collected
8
st11-kl64 crkp
8
crkp clone
8
dynamics carbapenem-resistant
4

Similar Publications

Rationale: Carbapenem-resistant Klebsiella pneumoniae (CRKP) bloodstream infections are a severe complication resulting from granulocyte deficiency following chemotherapy for hematologic malignancies and have a high mortality rate. However, reports of disseminated organ infections secondary to bloodstream infections are rare.

Patient Concerns And Diagnoses: We report 2 cases of patients with acute lymphoblastic leukemia who both developed CRKP bloodstream infections during the granulocyte deficiency stage following chemotherapy, with 1 case of secondary bacterial liver abscess and 1 case of secondary septic arthritis.

View Article and Find Full Text PDF

Emerging carbapenem-resistant in a tertiary care hospital in Lima, Peru.

Microbiol Spectr

January 2025

Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.

The emergence of carbapenem-resistant (CRKP) poses a significant public health threat, particularly in low- and middle-income countries (LMICs) with limited surveillance and treatment options. This study examines the genetic diversity, resistance patterns, and transmission dynamics of 66 CRKP isolates recovered over 5 years (2015-2019) after the first case of CRKP was identified at a tertiary care hospital in Lima, Peru. Our findings reveal a shift from to as the dominant carbapenemase gene after 2017.

View Article and Find Full Text PDF

Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a difficult to treat organism owing to limited therapeutic options. So far, little is known about the molecular characteristics of CRKP in Palestine.

Objectives: The aim of this study was to investigate the antimicrobial resistance patterns, multilocus sequence types (ST) and resistance genes among clinical K.

View Article and Find Full Text PDF

: The increased prevalence of antibiotic resistance among Gram-negative bacteria presents a severe public health challenge, leading to increased mortality rates, prolonged hospital stays, and higher medical costs. In Greece, the issue of multidrug-resistant Gram-negative bacteria is particularly alarming, exacerbated by overuse of antibiotics and inadequate infection control measures. This study aimed to detect the prevalence of extensively drug-resistant (XDR) Gram-negative bacteria in a tertiary hospital in Western Greece over the last eight years from 2016 to 2023.

View Article and Find Full Text PDF

Genomic characterization of ST11-KL25 hypervirulent KPC-2-producing multidrug-resistant from China.

iScience

December 2024

Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.

The global prevalence of ST11 hypervirulent carbapenem-resistant (hv-CRKP) isolates has been increasingly documented, yet genomic characterization of this clone remains insufficiently explored. Here, we report a clinical ST11-KL25 hv-CRKP strain (KP156) that exhibited resistance to multiple antibiotics and demonstrated hypervirulence in a mouse infection model. Whole-genome sequencing revealed that KP156 harbored one virulence plasmid (pKP156-Vir) and two resistance plasmids (pKP156-KPC and pKP156-tetA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!