AI Article Synopsis

  • Coarse woody debris (CWD) is crucial for forest biodiversity, providing habitat and food for many species, especially during harsh weather.
  • CWD plays a significant role in supporting fungal diversity in degraded boreal forests impacted by industrial pollution, showing less decline in fungal richness compared to surrounding forest litter.
  • Despite its benefits, the overall contribution of CWD to maintaining fungal diversity is low, primarily aiding only specific tolerant fungal taxa in polluted environments.

Article Abstract

Coarse woody debris (CWD) provides food and shelter to a large proportion of forest biota and is considered vital for biodiversity during periods of harsh weather. However, its importance in long-term stressed ecosystems remains largely unknown. In this work, we explored the contribution of CWD to fungal diversity along the gradient of boreal forest degradation caused by 77 years of heavy industrial emissions. We analyzed the diversity and composition of fungi in 270 samples of well-decayed and logs, as well as forest litter both adjacent to and distant from the logs. Compared with forest litter, the wood had higher water content and possessed substantially lower concentrations of heavy metals, which suggests its potential favorability for biota in polluted areas. The pollution-induced loss of fungal diversity in forest litter reached 34% and was stronger in the microhabitats not influenced by CWD. Meanwhile, wood fungal communities lost less than 10% of their total richness and even increased in alpha diversity. These processes led to the diversity and compositional convergence of fungal communities from different microhabitats and substrates in polluted areas. Despite this, the importance of wood and CWD-influenced microhabitats for fungal diversity maintenance was low. Apart from wood-associated fungi, the taxa whose diversity increased in the wood of polluted areas were ectomycorrhizal fungi and eurytopic soil saprotrophs (Mucoromycota, Mortierellomycota, Eurotiomycetes, and Helotiales) that easily tolerate highly toxic litter. Within the majority of pollution-sensitive soil saprotrophic groups, only terricolous Tricholomataceae benefit from CWD as microrefugia. Upon considering the ecological variability within low-rank taxa, the importance of decayed logs as safe sites can be high for certain soil-inhabiting fungal groups in polluted areas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8527098PMC
http://dx.doi.org/10.3389/fmicb.2021.729244DOI Listing

Publication Analysis

Top Keywords

polluted areas
16
fungal diversity
12
forest litter
12
fungal communities
8
diversity
7
forest
6
fungal
6
polluted
5
sheltering role
4
role well-decayed
4

Similar Publications

The assessment of humans indirectly exposed to chemicals via the environment (HvE) is an assessment element of the Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH) regulation. The European Union System for the Evaluation of Substances (EUSES) is the default screening tool, aimed at prioritizing chemicals for further refinement/higher tier assessment. This review summarizes the approach used in EUSES, evaluates the state of the science in human exposure modeling via the environment, and identifies areas for further research to strengthen the confidence and applicability of EUSES for assessing HvE.

View Article and Find Full Text PDF

Integrating mobile monitoring data with street view images (SVIs) holds promise for predicting local air pollution. However, algorithms, sampling strategies, and image quality introduce extra errors due to a lack of reliable references that quantify their effects. To bridge this gap, we employed 314 taxis to monitor NO, NO, PM, and PM, and extracted features from ∼382,000 SVIs at multiple angles (0°, 90°, 180°, 270°) and buffer radii (100-500 m).

View Article and Find Full Text PDF

Nanosafety assessment, which seeks to evaluate the risks from exposure to nanoscale materials, spans materials synthesis and characterisation, exposure science, toxicology, and computational approaches, resulting in complex experimental workflows and diverse data types. Managing the data flows, with a focus on provenance (who generated the data and for what purpose) and quality (how was the data generated, using which protocol with which controls), as part of good research output management, is necessary to maximise the reuse potential and value of the data. Instance maps have been developed and evolved to visualise experimental nanosafety workflows and to bridge the gap between the theoretical principles of FAIR (Findable, Accessible, Interoperable and Re-usable) data and the everyday practice of experimental researchers.

View Article and Find Full Text PDF

Air pollution has become a major challenge to global urban sustainable development, necessitating urgent solutions. Meteorological variables are key determinants of air quality; however, research on their impact across different urban gradients remains limited, and their mechanisms are largely unexplored. This study investigates the dynamic effects of meteorological variables on air quality under varying levels of urbanization using Kaohsiung City, Taiwan, as a case study.

View Article and Find Full Text PDF

Formaldehyde is considered as a significant contaminant. This study aimed to perform comprehensive research with systematic review, health risk estimation, meta-analysis, and Monte Carlo simulation to evaluate exposure to formaldehyde at different seasons of the year in various indoor environments. A systematic literature review was initially performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!