In order to control the release of mesalazine (MSZ) in the gastrointestinal tract to achieve better pharmacological effects in the colon, in this study, MSZ was added to hydroxypropyl-β-cyclodextrin (HP-β-CD) to form a water-soluble HP-β-CD/MSZ inclusion complex. Then, the inclusion compound was loaded into the structure of the bilayer polyelectrolyte complex microsphere formed by alginate (Alg), chitosan (Cs), and kappa carrageenan (κ-Car) as the hydrogel carrier, and the hydrogel beads with colon-specific release MSZ after oral administration were formed. The formed hydrogel beads have different swelling capabilities in different pH media and have the greatest swelling degree under pH 7.4. The encapsulation efficiency and drug loading of hydrogel beads can reach up to 83.23 and 18.31%, respectively, and the size of hydrogel beads can be reduced to less than 1 mm after drying, so that the size of oral administration can be reached. experiments also showed that the formed hydrogel beads had a better therapeutic effect on colitis than free drugs, and the microspheres were biodegradable, so the double-layer pH-sensitive microspheres could be effectively used in colon-targeting drug delivery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8531416PMC
http://dx.doi.org/10.3389/fphar.2021.706401DOI Listing

Publication Analysis

Top Keywords

hydrogel beads
20
oral administration
8
formed hydrogel
8
hydrogel
7
beads
5
preparation msz
4
msz hydrogel
4
hydrogel treatment
4
treatment colitis
4
colitis order
4

Similar Publications

In this study, we present an ultrasensitive and specific multiplexed detection method for SARS-CoV-2 and influenza (Flu) utilizing CRISPR/Cas13a technology combined with a hydrogel-encapsulated photonic crystal (PhC) barcode integrated with hybridization chain reaction (HCR). The barcodes, characterized by core-shell structures, are fabricated through partial replication of periodically ordered hexagonally close-packed silicon dioxide beads. Consequently, the opal hydrogel shell of these barcodes features abundant interconnected pores that provide a substantial surface area for probe immobilization.

View Article and Find Full Text PDF

This study presents an eco-friendly strategy by developing alginate based photocatalyst, where heterojunction photocatalyst is reinforced in calcium alginate via a facile method called ionotropic gelation. The prepared heterojunction photocatalyst (ZnO-g-CN) and alginate reinforced heterojunction photocatalyst (Alg/ZnO-g-CN) were characterized with Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Thermogravimetric analysis (TGA), UV-visible diffuse reflectance spectroscopy (UV-vis DRS), Field emission scanning electron microscopy (FE-SEM) and X-ray photoelectron spectroscopy (XPS) spectroscopy to confirm their structural, elemental and physicochemical properties. The photodegradation experiments demonstrated Alg/ZnO-g-CN showed excellent efficiency in the removal of methylene blue (MB) under both UV-vis light and natural sunlight irradiation.

View Article and Find Full Text PDF

Fabrication of phospholipid polymer-modified alginate hydrogels for bioartificial pancreas.

J Biosci Bioeng

January 2025

Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan. Electronic address:

The bioartificial pancreas, composed of a semi-permeable hydrogel encapsulating insulin-secreting cells, has attracted attention as a treatment for type 1 diabetes. In this study, we developed phospholipid polymer-modified alginate hydrogel beads that encapsulated spheroids of the pancreatic beta cell line MIN6. The hydrogel beads were composed of methacrylated alginic acid, which enabled both ionic and covalent cross-linking, resulting in a hydrogel that was more stable than conventional alginate hydrogels.

View Article and Find Full Text PDF

The VCo-LDH/CS hydrogel beads were created by combining VCo-layered double hydroxide (VCo-LDH) and chitosan (CS) using a cross-linking process with epichlorohydrin. These beads were specifically designed to remove tetracycline (TTC). To characterize the VCo-LDH/CS hydrogel beads, several analytical techniques were used, with PXRD, XPS, FESEM, EDX, and FT-IR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!