Preterm is a worldwide problem that affects infants' lives significantly. Moreover, the early impairment is more than limited to isolated brain regions but also to global and profound negative outcomes later, such as cognitive disorder. Therefore, seeking the differences of brain connectome between preterm and term infant brains is a vital step for understanding the developmental impairment caused by preterm. Existing studies revealed that studying the relationship between brain function and structure, and further investigating their differentiable connectomes between preterm and term infant brains is a way to comprehend and unveil the differences that occur in the preterm infant brains. Therefore, in this article, we proposed a novel canonical correlation analysis (CCA) with locality preserving projection (LPP) approach to investigate the relationship between brain functional and structural connectomes and how such a relationship differs between preterm and term infant brains. CCA is proposed to study the relationship between functional and structural connections, while LPP is adopted to identify the distinguishing features from the connections which can differentiate the preterm and term brains. After investigating the whole brain connections on a fine-scale connectome approach, we successfully identified 89 functional and 97 structural connections, which mostly contributed to differentiate preterm and term infant brains from the functional MRI (fMRI) and diffusion MRI (dMRI) of the public developing Human Connectome Project (dHCP) dataset. By further exploring those identified connections, the results innovatively revealed that the identified functional connections are short-range and within the functional network. On the contrary, the identified structural connections are usually remote connections across different functional networks. In addition, these connectome-level results show the new insights that longitudinal functional changes could deviate from longitudinal structural changes in the preterm infant brains, which help us better understand the brain-behavior changes in preterm infant brains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8526737 | PMC |
http://dx.doi.org/10.3389/fnins.2021.724391 | DOI Listing |
Neurosci Biobehav Rev
January 2025
Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 11, 43125 Parma, Italy.
Perinatal asphyxia (PA) is a leading cause of neonatal morbidity and mortality, often resulting in long-term neurodevelopmental challenges. Despite advancements in perinatal care, predicting long-term outcomes remains difficult. Early diagnosis is essential for timely interventions to reduce brain injury, with tools such as Magnetic Resonance Imaging, brain ultrasound, and emerging biomarkers playing a possible key role.
View Article and Find Full Text PDFWiad Lek
January 2025
EXPERT-ANALYTICAL MEDICAL CENTER FOR MOLECULAR GENETICS, SHUPYK NATIONAL HEALTHCARE UNIVERSITY OF UKRAINE, KYIV, UKRAINE.
Objective: Aim: To determine the influence of maternal and neonatal variants of the eNOS (G894T, rs1799983) and IL1B (C3953T, rs1143634) genes and their intergenic interactions on the development of HIE in newborns.
Patients And Methods: Materials and Methods: The study included a cohort of 105 newborns and their 99 mothers. Determination of variants of the genes eNOS (G894T, rs1799983) and IL1B (C3953T, rs1143634) was carried out for the patients of study groups.
PLoS One
January 2025
Department of Otolaryngology, University Hospital Regensburg, Regensburg, Germany.
The inferior colliculus is a key nucleus in the central auditory pathway, integrating acoustic stimuli from both cochleae and playing a crucial role in sound localization. It undergoes functional and structural development in childhood and experiences age-related degeneration later in life, contributing to the progression of age-related hearing loss. This study aims at finding out, whether the volume of the human inferior colliculus can be determined by analysis of routinely performed MRIs and whether there is any age-related variation.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
August 2024
Frequency-domain near-infrared spectroscopy (FD-NIRS) is a noninvasive method for quantitatively measuring optical absorption and scattering in tissue. This study introduces structured interrogation (SI) as an interference-based approach for implementing FD-NIRS in order to enhance optical property estimation in multilayered tissues and sensitivity to deeper layers. We find that, in the presence of realistic noise, SI accurately estimates properties and chromophore concentrations with less than a 5% error.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Obstetrics, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China.
The combined impact of concurrent primary Sjögren's syndrome (pSS) and autoimmune thyroid disease (AITD) on pregnancy outcomes remains underreported. A retrospective analysis was conducted on 115 pregnant patients diagnosed with pSS and delivering at the Third Affiliated Hospital of Guangzhou Medical University from January 2009 to July 2023. The effects of AITD on maternal and neonatal outcomes were examined and compared to a control group without AITD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!