Inadequate fetomaternal interactions could directly lead to pregnancy failure in dairy cows. Exosomes are widely involved in endometrial matrix remodeling, immune function changes, placental development, and other processes of embryo implantation and pregnancy in dairy cows. However, the role of exosomes derived from placental trophoblast cells in regulating the receptivity of endometrial cells and facilitating fetomaternal interaction remains unclear. In this study, bovine trophoblast cells (BTCs) were obtained from bovine placenta and immortalized by transfection with telomerase reverse transcriptase (TERT). Immortalized BTCs still possess the basic and key properties of primary BTCs without exhibiting any neoplastic transformation signs. Subsequently, the effect of trophoblast-derived exosomes (TDEs) on endometrial receptivity in endometrial epithelial cells (EECs) was determined, and the mechanism whereby TDEs and their proteins participate in the fetomaternal interaction during bovine pregnancy were explored. EECs were co-cultured with the exosomes derived from BTCs treated with progesterone (P4). Such treatment enhanced the expression of the endometrial receptivity factors, integrin αv, β3, Wnt7a, and MUC1 by changing the extracellular environment, metabolism, and redox balance in EECs via proteome alignment, compared with no treatment according to the DIA quantitation analysis. Our study demonstrated that trophoblast-derived exosome proteins are one of the most critical elements in fetomaternal interaction, and their changes may act as a key signal in altering endometrial receptivity and provide a potential target for improving fertility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8872746 | PMC |
http://dx.doi.org/10.1262/jrd.2021-077 | DOI Listing |
J Nanobiotechnology
January 2025
Department of Hematology, The Qinghai Provincial People's Hospital, Xining, 810007, People's Republic of China.
Eur J Med Chem
January 2025
School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. Electronic address:
Exosomes are critical mediators of cell-to-cell communication in physiological and pathological processes, due to their ability to deliver a variety of bioactive molecules. Tumor-derived exosomes (TDEs), in particular, carry carcinogenic molecules that contribute to tumor progression, metastasis, immune escape, and drug resistance. Thus, TDE inhibition has emerged as a promising strategy to combat cancer.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China. Electronic address:
Exosomes, which are small extracellular vesicles (sEVs), serve as versatile regulators of intercellular communication in the progression of various diseases, including neurological disorders. Among the diverse array of cargo they carry, non-coding RNAs (ncRNAs) play key regulatory roles in various pathophysiological processes. Exosomal ncRNAs derived from distinct cells modulate their reciprocal crosstalk locally or remotely, thereby mediating neurological diseases.
View Article and Find Full Text PDFStem Cells Transl Med
January 2025
Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.
Disruption of developmental processes affecting the fetal lung leads to pulmonary hypoplasia. Pulmonary hypoplasia results from several conditions including congenital diaphragmatic hernia (CDH) and oligohydramnios. Both entities have high morbidity and mortality, and no effective therapy that fully restores normal lung development.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 43150, Sweden.
Targeted delivery of therapeutic agents is a persistent challenge in modern medicine. Recent efforts in this area have highlighted the utility of extracellular vesicles (EVs) as drug carriers, given that they naturally occur in bloodstream and tissues, and can be loaded with a wide range of therapeutic molecules. However, biodistribution and tissue tropism of EVs remain difficult to study systematically.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!