The study of functional brain-heart interplay has provided meaningful insights in cardiology and neuroscience. Regarding biosignal processing, this interplay involves predominantly neural and heartbeat linear dynamics expressed via time and frequency domain-related features. However, the dynamics of central and autonomous nervous systems show nonlinear and multifractal behaviours, and the extent to which this behaviour influences brain-heart interactions is currently unknown. Here, we report a novel signal processing framework aimed at quantifying nonlinear functional brain-heart interplay in the non-Gaussian and multifractal domains that combines electroencephalography (EEG) and heart rate variability series. This framework relies on a maximal information coefficient analysis between nonlinear multiscale features derived from EEG spectra and from an inhomogeneous point-process model for heartbeat dynamics. Experimental results were gathered from 24 healthy volunteers during a resting state and a cold pressor test, revealing that synchronous changes between brain and heartbeat multifractal spectra occur at higher EEG frequency bands and through nonlinear/complex cardiovascular control. We conclude that significant bodily, sympathovagal changes such as those elicited by cold-pressure stimuli affect the functional brain-heart interplay beyond second-order statistics, thus extending it to multifractal dynamics. These results provide a platform to define novel nervous-system-targeted biomarkers. This article is part of the theme issue 'Advanced computation in cardiovascular physiology: new challenges and opportunities'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8543048 | PMC |
http://dx.doi.org/10.1098/rsta.2020.0260 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!