Due to its unique flavor profile, has become one of the most popular edible mushrooms in the world, but the regulatory mechanism of its flavor substances has not been revealed. To study the mechanism that regulates the anabolic metabolism of the important flavor substance lenthionine (LT), the effect of cysteine (Cys) synthesized by the cystathionine-γ-lyase () gene participating in the regulation of LT metabolism under drought stress was analyzed. Our results showed that drought stress promoted the accumulation of LT, and the key genes and were activated. Furthermore, drought stress promoted the accumulation of intracellular Cys and activated the key gene for Cys synthesis, . Both inhibition of the CSE enzyme activity by inhibitors and silencing of the gene under drought stress significantly reduced the intracellular contents of Cys and LT, but the inhibition of LT synthesis disappeared after the exogenous addition of Cys. These results indicate that LT synthesis in under drought stress is dependent on Cys. In summary, the mechanism of the regulation of flavor substances in edible mushrooms by the environment was revealed for the first time.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.1c04829DOI Listing

Publication Analysis

Top Keywords

drought stress
24
flavor substance
8
edible mushrooms
8
flavor substances
8
stress promoted
8
promoted accumulation
8
drought
6
stress
6
cys
6
flavor
5

Similar Publications

Ajowan () is an important spice in the food industry, as a well as a medicinal plant with remarkable antioxidant properties. In this study, its essential oil content, chemical composition, flavonoid content, phenolic content, and antioxidant capacity were evaluated under three irrigation regimes (50, 70, and 90% field capacity) and different amounts of nano silicon (0, 1.5, and 3 mM) in ten populations of ajowan.

View Article and Find Full Text PDF

Plant growth and development require water, but excessive water hinders growth. Sesame ( L.) is an important oil crop; it is drought-tolerant but sensitive to waterlogging, and its drought tolerance has been extensively studied.

View Article and Find Full Text PDF

In this study, the drought-responsive gene from barley was transferred to , and overexpression lines were obtained. The phenotypic characteristics of the transgenic plants, along with physiological indicators and transcription level changes of stress-related genes, were determined under drought treatment. Under drought stress, transgenic plants overexpressing exhibited enhanced drought tolerance and longer root lengths compared to wild-type plants.

View Article and Find Full Text PDF

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme widely involved in glycolysis in animal cells and in non-metabolic processes, including apoptosis and the regulation of gene expression. GAPDH is a ubiquitous protein that plays a pivotal role in plant metabolism and handling of stress responses. However, its function in plant stress resistance remains unknown.

View Article and Find Full Text PDF

from Improves Drought Tolerance by Reducing Stomatal Aperture and Inducing ABA Receptor Family Genes in Transgenic Poplar Plants.

Int J Mol Sci

December 2024

State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.

The basic helix-loop-helix (bHLH) family members are involved in plant growth and development, physiological metabolism, and various stress response processes. is a major turpentine-producing and wood-producing tree in seasonally dry areas of southern China. Its economic and ecological values are well known.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!