Optical anti-counterfeiting and encryption have become a hotspot in information security. However, the advanced optical anti-counterfeiting technology still suffers from low security by single-luminescent mode. Herein, we present a novel multi-mode anti-counterfeiting strategy based on KLuSiO: Tb/Bi (KLSO: Tb/Bi) phosphors for the first time. KLSO not only provides various lattice sites for Bi ions occupying to achieve tunable luminescence but can also be non-equivalently substituted by Tb ions to produce persistent or thermo-luminescence. Furthermore, in the pattern "8888" constructed by the mixture of polyacrylic acid (PAA) with KLSO: Tb/Bi phosphors, we selectively trigger the three luminescent modes of Bi and Tb ions to realize the design of differential display in the fields of thermal response, time resolution, and luminescence color for optical anti-counterfeiting. The differentiated display can only be presented under specific multi-stimuli response, which further improves the security of information. Our work provides a new insight for designing advanced materials and can be expected to inspire future studies to explore optical anti-counterfeiting technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2021.10.046 | DOI Listing |
Chem Sci
December 2024
Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam PO Box 94157 1090 GD Amsterdam The Netherlands
Development of chiral organic materials with a strong chiroptical response is crucial to advance technologies based on circularly polarized luminescence, enantioselective sensing, or unique optical signatures in anti-counterfeiting. The progress in the field is hampered by the lack of structure-property relationships that would help designing new chiral molecules. Here, we address this challenge by synthesis and investigation of two chiral macrocycles that integrate in their structure a pseudo-meta [2.
View Article and Find Full Text PDFDalton Trans
December 2024
State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
Recently, metal halides have attracted much attention due to their fascinating optical properties. However, achieving efficient white emission with ultralong afterglow remains a great challenge. Herein, we report Sb/Mn-codoped CsCdCl and multiple emission bands can be observed, which are derived from the self-trapped exciton emission of the Sb-Cl moiety and the d-d transition of Mn.
View Article and Find Full Text PDFNanophotonics
November 2024
School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
Structural colors, resulting from the interaction of light with nanostructured materials rather than pigments, present a promising avenue for diverse applications ranging from ink-free printing to optical anti-counterfeiting. Achieving structural colors with high purity and brightness over large areas and at low costs is beneficial for many practical applications, but still remains a challenge for current designs. Here, we introduce a novel approach to realizing large-scale structural colors in layered thin film structures that are characterized by both high brightness and purity.
View Article and Find Full Text PDFSmall
December 2024
Hubei Engineering Technology Research Center of Spectrum and Imaging Instrument, School of Electronic Information, Wuhan University, Wuhan, 430072, P. R. China.
Ultralong room-temperature phosphorescent (URTP) materials have garnered significant attention in anti-counterfeiting, optoelectronic displays, and bio-imaging due to their unique optical properties. However, most URTP materials exhibit weak emission or are quenched in aqueous solutions. This study proposes a simple and effective strategy for preparing full-color aqueous URTP materials using a one-step microwave method.
View Article and Find Full Text PDFMetasurfaces have demonstrated significant potential in optical encryption and anti-counterfeiting due to their incredible capability of manipulating various light properties. However, previous metasurface-encryption methods did not sufficiently explore the spatial frequency aspect, particularly regarding evanescent waves. Here, we propose an encryption scheme by introducing evanescent waves into the encoding and decoding processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!