Microplastic pollution of stormwater can be a serious threat to the environment. Gross pollutant trap (GPT) - bioretention treatment trains have been shown previously to treat (inter alia) particulate stormwater pollutants including microplastic particles larger than 100 μm. This study was carried out to investigate whether such stormwater treatment trains also remove smaller 20 to 100 μm sized microplastic particles from highway runoff. Further, it investigates occurrence and concentration of 20 to 100 μm sized microplastic particles in highway runoff and which polymer types they can be assigned to. Volume proportional samples from nine rain events were taken from the incoming highway stormwater, from the gross pollutant trap effluent and the outflow from a bioretention system as well as a non-vegetated sand filter. The microplastic analyses were carried out using μFTIR and FTIR-ATR, which made it possible to detect particles where carbon black was present. It was found that 20 to 100 μm sized microplastic particles are abundant in highway runoff and that their concentrations are highly variable, with a median of 230 particles/L, a minimum of 42 particles/L and a maximum of 8577 particles/L. The dominant polymer types in highway stormwater were Polypropylene (PP), Ethylene Propylene Diene (EPDM) rubber and Ethylene-vinyl acetate (EVA). The treatment train with the bioretention system treated 20 to 200 μm sized microplastic particles significantly better than the treatment train with a non-vegetated sand filter, with median effluent concentrations of 26.5 particles/L and 121 particles/L, respectively. The GPT had no significant impact on the treatment of 20 to 100 μm sized microplastic particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.151151 | DOI Listing |
Aquat Toxicol
January 2025
CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.
Antibiotics and microplastics (MPs) are two classes of emerging contaminants that are commonly found in various water environments. However, how different sized MPs affect the toxicity and biodegradation of antibiotics remains poorly understood. We investigated the effects of polystyrene (PS) MPs with different particle sizes (100 nm and 30 μm) on the physiological responses and degradation behavior of Phaeodactylum tricornutum to sulfamerazine (SMR).
View Article and Find Full Text PDFComput Biol Chem
January 2025
Department of Biostatistics and Bioinformatics, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India. Electronic address:
Plastics play an essential role in modern fisheries and their degradation releases micro- and nano-sized plastic particles which further causes ecological and human health hazards through various environmental contamination pathways and toxicity mechanisms, which can cause respiratory problems, cancer, reproductive toxicity, endocrine disruption and neurological effects in humans. This study utilized various bioinformatics tools through multi-step computational analyses to investigate the interactions between prevalent fisheries microplastics and the key protein receptor acetylcholinesterase (AChE), which is associated with neurotoxicity, as it can interfere with nerve impulses and muscle control. Our results indicate that the binding of seven polymers within AChE's active site, with dodecane and polypropylene exhibited highest affinity with hydrogen bonding were observed through Molecular docking of different program (PyRx) and servers (CB-Dock, eDock) then the stability of AChE-dodecane and AChE-polypropylene complexes were observed through MD simulations for 100 ns.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, China.
The pervasive presence of microplastics (MPs) in agroecosystems poses a significant threat to soil health and plant growth. This study investigates the effects of varying concentrations and sizes of polystyrene microplastics (PS-MPs) on the L.'s height, dry weight, antioxidant enzyme activities, soil physicochemical properties, and rhizosphere microbial communities.
View Article and Find Full Text PDFToxics
January 2025
Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan.
Microplastics pose a serious ecological threat to agricultural soils, as they are very persistent in nature. Microplastics can enter the soil system in different ways and present different shapes and concentrations. However, little is known about how plants react to microplastics with different concentrations and shapes.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
The rapid expansion of the cosmetics industry has significantly increased the adoption of alternative microplastics in response to increasingly stringent global environmental regulations. This study presents a comparative analysis of the treatment performance of silica powder and cornstarch-common alternatives for microplastics in cosmetics-using ceramic membrane filtration combined with flow imaging microscopy (FlowCam) to analyze particle behavior. Bench-scale crossflow filtration experiments were performed with commercially available alumina ceramic membranes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!