Soil contamination by potentially toxic elements (PTEs) is one of the greatest threats to environmental degradation. Knowing where PTEs accumulated in soil can mitigate their adverse effects on plants, animals, and human health. We evaluated the potential of using long-term remote sensing images that reveal the bare soils, to detect and map PTEs in agricultural fields. In this study, 360 soil samples were collected at the superficial layer (0-20 cm) in a 2574 km agricultural area located in São Paulo State, Brazil. We tested the Soil Synthetic Image (SYSI) using Landsat TM/ETM/ETM+, Landsat OLI, and Sentinel 2 images. The three products have different spectral, temporal, and spatial resolutions. The time series multispectral images were used to reveal areas with bare soil and their spectra were used as predictors of soil chromium, iron, nickel, and zinc contents. We observed a strong linear relationship (-0.26 > r > -0.62) between the selected PTEs and the near infrared (NIR) and shortwave infrared (SWIR) bands of Sentinel (ensemble of 4 years of data), Landsat TM (35 years data), and Landsat OLI (4 years data). The clearest discrimination of soil PTEs was obtained from SYSI using a long term Landsat 5 collection over 35 years. Satellite data could efficiently detect the contents of PTEs in soils due to their relation with soil attributes and parent materials. Therefore, distinct satellite sensors could map the PTEs on tropics and assist in understanding their spatial dynamics and environmental effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2021.118397 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!