Carcinogenicity of hexavalent chromium [Cr (VI)] has been supported by a number of epidemiological and animal studies; however, its carcinogenic mode of action is still incompletely understood. To identify mechanisms involved in cancer development, we analyzed gene expression data from duodena of mice exposed to Cr(VI) in drinking water. This analysis included (i) identification of upstream regulatory molecules that are likely responsible for the observed gene expression changes, (ii) identification of annotated gene expression data from public repositories that correlate with gene expression changes in duodena of Cr(VI)-exposed mice, and (iii) identification of hallmark and oncogenic signature gene sets relevant to these data. We identified the inactivated CFTR gene among the top scoring upstream regulators, and found positive correlations between the expression data from duodena of Cr(VI)-exposed mice and other datasets in public repositories associated with the inactivation of the CFTR gene. In addition, we found enrichment of signatures for oncogenic signaling, sustained cell proliferation, impaired apoptosis and tissue remodeling. Results of our computational study support the tumor-suppressor role of the CFTR gene. Furthermore, our results support human relevance of the Cr(VI)-mediated carcinogenesis observed in the small intestines of exposed mice and suggest possible groups that may be more vulnerable to the adverse outcomes associated with the inactivation of CFTR by hexavalent chromium or other agents. Lastly, our findings predict, for the first time, the role of CFTR inactivation in chemical carcinogenesis and expand the range of plausible mechanisms that may be operative in Cr(VI)-mediated carcinogenesis of intestinal and possibly other tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9659473PMC
http://dx.doi.org/10.1016/j.taap.2021.115773DOI Listing

Publication Analysis

Top Keywords

cftr gene
16
gene expression
16
inactivation cftr
12
hexavalent chromium
12
expression data
12
gene
9
duodena mice
8
mice exposed
8
crvi drinking
8
drinking water
8

Similar Publications

Cystic Fibrosis (CF) is a life-threatening hereditary disease resulting from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that encodes a chloride channel essential for ion transport in epithelial cells. Mutations in CFTR, notably the prevalent F508del mutation, impair chloride transport, severely affecting the respiratory system and leading to recurrent infections. Recent therapeutic advancements include CFTR modulators such as ETI, a combination of two correctors (Elexacaftor and Tezacaftor) and a potentiator (Ivacaftor), that can improve CFTR function in patients with the F508del mutation.

View Article and Find Full Text PDF

Cystic Fibrosis (CF) is a life-shortening autosomal recessive disease caused by mutations in the CFTR gene, resulting in functional impairment of the encoded ion channel. F508del mutation, a trinucleotide deletion, is the most frequent cause of CF affecting approximately 80% of persons with cystic fibrosis (pwCFs). Even though current pharmacological treatments alleviate the F508del-CF disease symptoms there is no definitive cure.

View Article and Find Full Text PDF

Whole-Exome Sequencing: Discovering Genetic Causes of Granulomatous Mastitis.

Int J Mol Sci

January 2025

Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Türkiye.

Granulomatous mastitis (GM) is a rare, benign, but chronic and recurrent inflammatory breast disease that significantly impacts physical and psychological well-being. It often presents symptoms such as pain, swelling, and discharge, leading to diagnostic confusion with malignancy. The etiology of GM remains unclear, though autoimmune and multifactorial components are suspected.

View Article and Find Full Text PDF

Testing organ-specific responses to therapies in tissues differentiated from Cystic Fibrosis patient derived iPSCs.

Stem Cell Res

January 2025

Programme in Molecular Medicine, Research Institute for SickKids Hospital, Toronto, Canada; Department of Clinical and Experimental Medicine, University of Foggia, Italy. Electronic address:

Cystic Fibrosis (CF) is a life-shortening disease that is caused by mutations in the CFTR gene, a gene that is expressed in multiple organs. There are several primary tissue models of CF disease, including nasal epithelial cultures and rectal organoids, that are effective in reporting the potential efficacy of mutation-targeted therapies called CFTR modulators. However, there is the well-documented variation in tissue dependent, therapeutic response amongst CF patients, even those with the same CF-causing mutation.

View Article and Find Full Text PDF

Novel Cystic Fibrosis Ferret Model Enables Visualization of CFTR Expression Cells and Genetic CFTR Reactivation.

Hum Gene Ther

January 2025

Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.

Cystic fibrosis (CF) is caused by mutations in the (). While gene therapy holds promise as a cure, the cell-type-specific heterogeneity of expression in the lung presents significant challenges. Current CF ferret models closely replicate the human disease phenotype but have limitations in studying functional complementation through cell-type-specific CFTR restoration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!