Aging is a predominant risk factor for various eye diseases. Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, and its etiology remains unclear. Fragmented and dysfunctional mitochondria are associated with age-related diseases. The retinal pigment epithelium (RPE), a polarized cell layer that functions in visual pigment recycling and degeneration, is suspected as the primary region site of AMD. In the present study, we investigated the relationship between mitochondrial dysfunction and RPE aging. Compared to young mice, aged pigmented mice (C57BL/6J, 12-month-old) exhibit decreased visual function without retinal thinning. Consistently, the rhodopsin expression level decreased in the outer segment of aged mice. Moreover, the cell volume of the RPE increased in aged animals. Interestingly, the expression of mitochondria dynamics-related proteins, including Drp1, was altered in the RPE-choroid complex but not in the neural retina after aging. Electron microscopy revealed that mitochondrial size decreased and cristae width increased in aged RPE. The photoreceptor outer segment (POS) treatment of ARPE-19 cells causes Drp1 activation. Furthermore, pharmacological suppression of mitochondrial fission improved the phagocytosis of the POS. These findings indicate that mitochondrial dysfunction and fission in RPE impede phagocytosis and cause retardation of the visual cycle, which can be one of the age-related defects in the retina that may contribute to the onset of AMD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exer.2021.108800 | DOI Listing |
ACS Pharmacol Transl Sci
January 2025
Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.
The accumulation of ceramides and related metabolites has emerged as a pivotal mechanism contributing to the onset of age-related diseases. However, small molecule inhibitors targeting the ceramide synthesis pathway for clinical use are currently unavailable. We synthesized a safe and orally bioavailable inhibitor, termed ALT-007, targeting the rate-limiting enzyme of ceramide synthesis, serine palmitoyltransferase (SPT).
View Article and Find Full Text PDFIBRO Neurosci Rep
June 2025
Department of Anesthesiology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200090, China.
Introduction: Perioperative neurocognitive dysfunction (PND) is a significant challenge for patients who need surgery worldwide. Morphine can trigger an intense inflammatory reaction in the central nervous system (CNS) at the same time as analgesia, thus adverse effects aggravating PND. Microglia polarization is closely involved in the regulation of neuroinflammation and the TLR4/MyD88/NF-κB signaling pathway.
View Article and Find Full Text PDFBr J Pharmacol
January 2025
Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China.
Background And Purpose: Autophagy-lysosomal pathway dysfunction leads to postoperative cognitive dysfunction (POCD). Dexmedetomidine (Dex) improves POCD, and we probed the effects of Dex on autophagy-lysosomal pathway dysfunction in a POCD model.
Experimental Approach: A POCD mouse model was established and intraperitoneally injected with Dex.
BMC Urol
January 2025
Institute of Clinical Medicine, The Second affiliated Hospital of Hainan Medical University, 368th Yehai Avenue, Haikou, Hainan, 570311, China.
Background: Clear cell renal cell carcinoma (ccRCC) is the most common malignant urological tumor, and regrettably, and is insensitive to chemotherapy and radiotherapy, resulting in poor patient outcomes. DBF4 plays a critical role in DNA replication and participates in various biological functions, making it an attractive target for cancer treatment. However, its significance in ccRCC has not yet been explored.
View Article and Find Full Text PDFGeroscience
January 2025
Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL, USA.
Cellular senescence contributes to inflammation and organ dysfunction during aging. While this process is generally characterized by irreversible cell cycle arrest, its morphological features and functional impacts vary in different cells from various organs. In this study, we examined the expression of multiple senescent markers in the lungs of young and aged humans and mice, as well as in mouse lung endothelial cells cultured with a senescence inducer, suberoylanilide hydroxamic acid (SAHA), or doxorubicin (DOXO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!