Exposure of American lobster (Homarus americanus) to the pesticide chlorpyrifos results in changes in gene expression.

Comp Biochem Physiol Part D Genomics Proteomics

Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada; AVC Lobster Science Centre, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada.

Published: December 2021

Chlorpyrifos is an organophosphate that is currently used to reduce arthropod pests for the protection of agricultural crops. Coastal marine ecosystems may be exposed to agricultural pesticides via runoff and pesticide exposure can impact the health and survival of non-target species such as the American lobster (Homarus americanus). In the current study, the gene expression changes of H. americanus stage IV larvae were evaluated to understand the physiological mechanisms affected by exposure to sublethal concentrations of chlorpyrifos. After 48 h chlorpyrifos exposure, surviving lobsters were processed for Illumina RNA sequencing (RNA-seq). Genes of interest that showed significant changes using RNA-seq were verified using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Analysis of RNA-seq and the confirmation of gene expression patterns via RT-qPCR found altered expression in genes related to stress response (glutathione peroxidase 3 and heat shock protein 60), hypoxia response (hairy, astakine 2, hemocyanin), moulting (cytochrome P450 307a1 and chitinase), and immunity (astakine 2) pathways. Changes to gene expression were most notable in lobsters exposed to 0.57 μg/L chlorpyrifos.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbd.2021.100918DOI Listing

Publication Analysis

Top Keywords

gene expression
16
american lobster
8
lobster homarus
8
homarus americanus
8
changes gene
8
chlorpyrifos
5
expression
5
exposure
4
exposure american
4
americanus pesticide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!