Recent studies have found primary degradation products of phenylarsenic chemical warfare agents (CWAs) accumulating in fish tissues, while the potential effects of these dumped phenylarsenic CWAs, such as Clark I and II, in the Baltic Sea biota are poorly understood. In this study, the metabolism and cytotoxicity of diphenylarsinic acid (DPA), a primary degradation product of phenylarsenic CWA, was studied by incubating rainbow trout cell line RTL-W1 cells in media with 100 mg/L DPA. Previously undescribed metabolites were identified by ultra-high performance liquid chromatography-high resolution mass spectrometry (UPHLCHRMS). Moreover, the cytotoxicity of diphenylarsine glutathione conjugate (DPA-SG), the major metabolite of DPA, was studied. Cytotoxicity of the compounds was evaluated using the Neutral Red retention test (NRR), showing an IC value of 278 mg/L for DPA and 1.30 mg/L for DPA-SG, indicating that the glutathione (GSH) conjugate of DPA is more than two orders of magnitude toxic than DPA itself, suggesting that toxic properties of DPA are increased after conjugation with intracellular GSH leading enhanced toxicity after uptake. Results gained in this study give more detailed information for elucidating biological effects of dumped chemical munitions in marine environment. Moreover, the results help in assessing the environmental and health risks posed by marine munition continued presence and deterioration in the sea bottom.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2021.105993 | DOI Listing |
Carbohydr Res
January 2025
Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Campus Scientifico E. Mattei, via Ca' Le Suore 2, 61029, Urbino, PU, Italy. Electronic address:
Cinnamic Acid Sugar Ester Derivatives (CASEDs) are a class of natural compounds that exhibit several interesting biological activities. However, to date, no examples of their use in sunscreen formulations have been reported. Here, we describe the synthesis of a series of novel cinnamic acid esters of glucose (4a-g), ribose (4h) and lactose (4i) starting from the respective acetals 3.
View Article and Find Full Text PDFJ Med Chem
January 2025
Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
Thioredoxin reductase 1 (TrxR1) is an important therapeutic target for nonsmall cell lung cancer (NSCLC) treatment due to its overexpression in NSCLC cells. In this work, to address the deficiency that sesquiterpene lactone containing α-methylene-γ-lactone moiety was rapidly metabolized by endogenous nucleophiles, series of novel thioether derivatives were designed and synthesized based on a reactive oxygen species (ROS)-triggered prodrug strategy. Among them, prodrug exhibited potent cytotoxicity against NSCLC cells and better release rates in response to ROS.
View Article and Find Full Text PDFBiotechnol J
January 2025
Faculty of Pharmacy, iMed.ULisboa - Research Institute for Medicines, University of Lisbon, Lisbon, Portugal.
Triple-negative breast cancer (TNBC) is a clinically aggressive subtype of breast cancer that remains an unmet medical need. Because TNBC cells do not express the most common markers of breast cancers, there is an active search for novel molecular targets in triple-negative tumors. Additionally, this subtype of breast cancer presents strong immunogenic characteristics which have been encouraging the development of immunotherapeutic approaches against the disease.
View Article and Find Full Text PDFCancer Med
February 2025
Department of General Surgery, The First People's Hospital of Baiyin (Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine), Baiyin, China.
Background: Photodynamic therapy (PDT) is a noninvasive cancer treatment that works by using light to stimulate the production of excessive cytotoxic reactive oxygen species (ROS), which effectively eliminates tumor cells. However, the therapeutic effects of PDT are often limited by tumor hypoxia, which prevents effective tumor cell elimination. The oxygen (O) consumption during PDT can further exacerbate hypoxia, leading to post-treatment adverse events.
View Article and Find Full Text PDFMisfolding and aggregation of proteins into amyloidogenic assemblies are key features of several metabolic and neurodegenerative diseases. Human insulin has long been known to form amyloid fibrils under various conditions, which affects its bioavailability and function. Clinically, insulin aggregation at recurrent injection sites poses a challenge for diabetic patients who rely on insulin therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!