In vitro study on the toxicity of nanoplastics with different charges to murine splenic lymphocytes.

J Hazard Mater

Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China; Key Laboratory of Pollution Ecology and Environment Engineering, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, PR China.

Published: February 2022

Nanoplastics can be ingested by organisms and penetrate biological barriers to affect multiple physiological functions. However, few studies have focused on the effects of nanoplastics on the mammalian immune system. We evaluated the effects and underlying mechanism of nanoplastics of varying particle sizes and surface charges on murine splenic lymphocytes. We found that nanoplastics penetrated into splenic lymphocytes and that nanoplastics of a diameter of 50 nm were absorbed more efficiently by the cells. The nanoplastics decreased cell viability, induce cell apoptosis, up-regulated apoptosis-related protein expression, elicited the production of reactive oxygen species, altered mitochondrial membrane potential, and impaired mitochondrial function. Positively charged nanoplastics exerted the strongest toxicity. Negatively charged and uncharged nanoplastics caused oxidative stress and mitochondrial structural damage in lymphocytes, while positively charged nanoplastics induced endogenous apoptosis directly. Moreover, nanoplastics inhibited the expression of activated T cell markers on the T cell surface, while inhibiting the differentiation of CD8 T cells and the expression of helper T cell cytokines. In terms of the mechanism, a series of key signaling molecules in the pathways of T cell activation and function were markedly down-regulated after exposure to nanoplastics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.127508DOI Listing

Publication Analysis

Top Keywords

nanoplastics
12
splenic lymphocytes
12
lymphocytes nanoplastics
12
charges murine
8
murine splenic
8
positively charged
8
charged nanoplastics
8
cell
6
vitro study
4
study toxicity
4

Similar Publications

Intestinal Barrier Damage and Growth Retardation Caused by Exposure to Polystyrene Nanoplastics Through Lactation Milk in Developing Mice.

Nanomaterials (Basel)

January 2025

National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.

Microplastics, defined as plastic fragments smaller than 5 mm, degrade from larger pollutants, with nanoscale microplastic particles presenting significant biological interactions. This study investigates the toxic effects of polystyrene nanoplastics (PS-NPs) on juvenile mice, which were exposed through lactation milk and drinking water at concentrations of 0.01 mg/mL, 0.

View Article and Find Full Text PDF

Undifferentiated spermatogonia (Undiff-SPG) plays a critical role in maintaining continual spermatogenesis. However, the toxic effects and molecular mechanisms of maternal exposure to nanoplastics on offspring Undiff-SPG remain elusive. Here, we utilized a multiomics combined cytomorphological approach to explore the reproductive toxicity and mechanisms of polystyrene nanoplastics (PS-NPs) on offspring Undiff-SPG in mice after maternal exposure.

View Article and Find Full Text PDF

Aging of Polystyrene Micro/Nanoplastics Enhances Cephalosporin Phototransformation via Structure-Sensitive Interfacial Hydrogen Bonding.

Environ Sci Technol

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China.

Beyond their roles in adsorbing and transporting pollutants, microplastics (MPs) and nanoplastics (NPs), particularly polystyrene variants (PS-M/NPs), have emerged as potential accelerators for the transformation of coexisting contaminants. This study uncovered a novel environmental phenomenon induced by aged PS-M/NPs and delved into the underlying mechanisms. Our findings revealed that the aged PS-M/NP particles significantly amplified the photodegradation of common cephalosporin antibiotics, and the extent of enhancement was tightly correlated to the molecular structures of cephalosporin antibiotics.

View Article and Find Full Text PDF

Numeric uptake drives nanoplastic toxicity: Size-effects uncovered by toxicokinetic-toxicodynamic (TKTD) modeling.

J Hazard Mater

January 2025

Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China. Electronic address:

Predicting nanoplastic bioaccumulation and toxicity using process-based models is challenging due to the difficulties in tracing them at low concentrations. This study investigates the size-dependent effects of nanoplastic exposure on Daphnia magna using a toxicokinetic-toxicodynamic (TKTD) model. Palladium-doped fluorescent nanoplastics in three sizes (30-nm, 66-nm, 170-nm) were tested at two numeric exposure concentrations.

View Article and Find Full Text PDF

The prevalence of nanoplastics (NPs) and sulfonamide antibiotics (SAs) in the aquatic environment is potentially harmful to the environment, and these pollutants are often present in the environment in the form of composite ones, thereby introducing more complex effects and hazards to the environment. Therefore, it is crucial to investigate the toxic effects of the individual target pollutants and their mixtures. In this study, we used Scenedesmus obliquus as the test organisms, two types of NPs: polystyrene (PS) and amine-modified (NH-PS), four SAs: sulfapyridine (SPY), sulfamethazine (SMR), sulfamethoxypyridazine (SMP), and sulfamethoxazole (SMZ), and their eight binary mixtures were examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!