Compartmentalized cAMP signaling in cardiac ventricular myocytes.

Cell Signal

Department of Pharmacology, University of Nevada, Reno, Reno, NV 89557, United States of America. Electronic address:

Published: January 2022

Activation of different receptors that act by generating the common second messenger cyclic adenosine monophosphate (cAMP) can elicit distinct functional responses in cardiac myocytes. Selectively sequestering cAMP activity to discrete intracellular microdomains is considered essential for generating receptor-specific responses. The processes that control this aspect of compartmentalized cAMP signaling, however, are not completely clear. Over the years, technological innovations have provided critical breakthroughs in advancing our understanding of the mechanisms underlying cAMP compartmentation. Some of the factors identified include localized production of cAMP by differential distribution of receptors, localized breakdown of this second messenger by targeted distribution of phosphodiesterase enzymes, and limited diffusion of cAMP by protein kinase A (PKA)-dependent buffering or physically restricted barriers. The aim of this review is to provide a discussion of our current knowledge and highlight some of the gaps that still exist in the field of cAMP compartmentation in cardiac myocytes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8602782PMC
http://dx.doi.org/10.1016/j.cellsig.2021.110172DOI Listing

Publication Analysis

Top Keywords

compartmentalized camp
8
camp signaling
8
second messenger
8
cardiac myocytes
8
camp compartmentation
8
camp
7
signaling cardiac
4
cardiac ventricular
4
ventricular myocytes
4
myocytes activation
4

Similar Publications

Signal transduction downstream of axon guidance molecules is essential to steer developing axons. Second messengers including cAMP are key molecules shared by a multitude of signaling pathways and are required for a wide range of cellular processes including axon pathfinding. Yet, how these signaling molecules achieve specificity for each of their downstream pathways remains elusive.

View Article and Find Full Text PDF

Central to the process of axon elongation is the concept of compartmentalized signaling, which involves the A-kinase anchoring protein (AKAP)-dependent organization of signaling pathways within distinct subcellular domains. This spatial organization is also critical for translating electrical activity into biochemical events. Despite intensive research, the detailed mechanisms by which the spatial separation of signaling pathways governs axonal outgrowth and pathfinding remain unresolved.

View Article and Find Full Text PDF

is the causative agent of Chagas disease, a zoonotic infectious disease considered a leading cause of cardiomyopathy, disability, and premature death in the Americas. This parasite spends its life between a mammalian host and an arthropod vector, undergoing essential transitions among different developmental forms. How senses microenvironmental changes that trigger cellular responses necessary for parasite survival has remained largely unknown.

View Article and Find Full Text PDF

Endomembrane GPCR signaling: 15 years on, the quest continues.

Trends Biochem Sci

January 2025

Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK.

G-protein-coupled receptors (GPCRs) are the largest family of cell receptors. They mediate the effects of a multitude of endogenous and exogenous cues, are deeply involved in human physiology and disease, and are major pharmacological targets. Whereas GPCRs were long thought to signal exclusively at the plasma membrane, research over the past 15 years has revealed that they also signal via classical G-protein-mediated pathways on membranes of intracellular organelles such as endosomes and the Golgi complex.

View Article and Find Full Text PDF

Terpenoids are the largest class of natural products, found across all domains of life. One of the most abundant bacterial terpenoids is the volatile odorant 2-methylisoborneol (2-MIB), partially responsible for the earthy smell of soil and musty taste of contaminated water. Many bacterial 2-MIB biosynthetic gene clusters were thought to encode a conserved transcription factor, named EshA in the model soil bacterium Streptomyces griseus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!