A visual encoding model links magnetoencephalography signals to neural synchrony in human cortex.

Neuroimage

Department of Psychology, New York University, New York, NY 10003, United States; Center for Neural Science, New York University, New York, NY 10003, United States.

Published: December 2021

Synchronization of neuronal responses over large distances is hypothesized to be important for many cortical functions. However, no straightforward methods exist to estimate synchrony non-invasively in the living human brain. MEG and EEG measure the whole brain, but the sensors pool over large, overlapping cortical regions, obscuring the underlying neural synchrony. Here, we developed a model from stimulus to cortex to MEG sensors to disentangle neural synchrony from spatial pooling of the instrument. We find that synchrony across cortex has a surprisingly large and systematic effect on predicted MEG spatial topography. We then conducted visual MEG experiments and separated responses into stimulus-locked and broadband components. The stimulus-locked topography was similar to model predictions assuming synchronous neural sources, whereas the broadband topography was similar to model predictions assuming asynchronous sources. We infer that visual stimulation elicits two distinct types of neural responses, one highly synchronous and one largely asynchronous across cortex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8788390PMC
http://dx.doi.org/10.1016/j.neuroimage.2021.118655DOI Listing

Publication Analysis

Top Keywords

neural synchrony
12
topography model
8
model predictions
8
predictions assuming
8
neural
5
synchrony
5
visual encoding
4
model
4
encoding model
4
model links
4

Similar Publications

Resting-state functional connectivity analyses have been used to examine synchrony in neural networks in substance use disorders (SUDs), with the default mode network (DMN) one of the most studied. Prior research has generally found less DMN synchrony during use and greater synchrony during cessation, although little research has utilized this method with opioid use. This study examined resting brain activity in treatment-seeking persons who use opioids at two points-when using opioids and when opioid-free-to determine whether the DMN exhibits different levels of connectivity during opioid use and cessation and whether differences in connectivity predict subsequent relapse.

View Article and Find Full Text PDF

Nonverbal connection is an important aspect of everyday communication. For romantic partners, nonverbal connection is essential for establishing and maintaining feelings of closeness. EEG hyperscanning offers a unique opportunity to examine the link between nonverbal connection and neural synchrony among romantic partners.

View Article and Find Full Text PDF

The opioid epidemic is a pervasive health issue and continues to have a drastic impact on the United States. This is primarily because opioids cause respiratory suppression and the leading cause of death in opioid overdose is respiratory failure ( , opioid-induced respiratory depression, OIRD). Opioid administration can affect the frequency and magnitude of inspiratory motor drive by activating µ-opioid receptors that are located throughout the respiratory control network in the brainstem.

View Article and Find Full Text PDF

Directional intermodular coupling enriches functional complexity in biological neuronal networks.

Neural Netw

November 2024

Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan; Graduate School of Engineering, Tohoku University, Sendai, Japan.

Hierarchically modular organization is a canonical network topology that is evolutionarily conserved in the nervous systems of animals. Within the network, neurons form directional connections defined by the growth of their axonal terminals. However, this topology is dissimilar to the network formed by dissociated neurons in culture because they form randomly connected networks on homogeneous substrates.

View Article and Find Full Text PDF

Alterations of synaptic plasticity and brain oscillation are associated with autophagy induced synaptic pruning during adolescence.

Cogn Neurodyn

December 2025

College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071 PR China.

Adolescent brain development is characterized by significant anatomical and physiological alterations, but little is known whether and how these alterations impact the neural network. Here we investigated the development of functional networks by measuring synaptic plasticity and neural synchrony of local filed potentials (LFPs), and further explored the underlying mechanisms. LFPs in the hippocampus were recorded in young (21 ~ 25 days), adolescent (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!