Reliable release testing for nanoparticles with the NanoDis System, an innovative sample and separate technique.

Int J Pharm

MyBiotech GmbH, Industriestraße 1B, 66802 Überherrn, Germany. Electronic address:

Published: November 2021

One of the critical quality attributes of nanoparticle formulations is drug release. Their release properties should therefore be well characterized with predictive and discriminative methods. However, there is presently still no standard method for the release testing of extended release nanoformulations. Dialysis techniques are widely used in the literature but suffer from severe drawbacks. Burst release of formulations can be masked by slow permeation kinetics of the free drug through the dialysis membrane, saturation in the membrane, and absence of agitation in the membrane. In this study, the release profile of poly(lactic co-glycolic) (PLGA) nanocapsules loaded with all-trans retinoic acid was characterized using an innovative sample and separate set-up, the NanoDis System, and compared to the release profile measured with a dialysis technique. The NanoDis System showed clear superiority over the dialysis method and was able to accurately characterize the burst release from the capsules and furthermore discriminate between different all-trans retinoic acid nanoparticle formulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8593552PMC
http://dx.doi.org/10.1016/j.ijpharm.2021.121215DOI Listing

Publication Analysis

Top Keywords

nanodis system
12
release testing
8
innovative sample
8
sample separate
8
nanoparticle formulations
8
release
8
burst release
8
release profile
8
all-trans retinoic
8
retinoic acid
8

Similar Publications

Developing a robust in vitro release method for a polymeric nanoparticle: Challenges and learnings.

Int J Pharm

September 2023

Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK.

Nanomedicines have emerged as a promising approach for targeted therapeutic delivery and specifically as a beneficial alternative to conventional cancer therapies as they can deliver higher concentrations of chemotherapeutic agents at the tumour site compared to healthy tissue, thus providing improved drug efficacy and lower systemic toxicity. Long acting injectables are increasingly becoming the focus of pharmaceutical research, as they can reduce dosing frequency and improve the life quality of patients. Development of an in vitro release (IVR) method for modified release nanomedicines is challenging because of the uniqueness and range of different formulation design approaches, as well as the complex nature of drug release mechanisms which may result in inherent variability.

View Article and Find Full Text PDF

One of the critical quality attributes of nanoparticle formulations is drug release. Their release properties should therefore be well characterized with predictive and discriminative methods. However, there is presently still no standard method for the release testing of extended release nanoformulations.

View Article and Find Full Text PDF

The study of morphological features of tissue organs of experimental animals after a single intragastric administration of an aqueous suspension nanodis-dispersed manganese (III, IV) at doses of 2000, 3500 and 5000 mg/kg showed complex of morphological changes in the form of circulatory disorders up to hemostasis and bleeding which lead to changes in the structure of organs, enhanced apoptosis, activation of macrophage system by proliferation and macrophage phagocytosis of degradation products of cells, hypertrophy of lymphoid tissue of immune system; development of histiocytic infiltrates in parenchymal organs and central nervous system. With the introduction of microsized analogues in the same doses of the morphological changes in the circulatory system, macrophage system and immune organsfound predominantly in a dose of 5000 mg/kg. Changes were less significant and were presented as activation of macrophages in the liver in the form of activation of Kupffer cells, proliferation of lymphoid tissue in the spleen, lymph histiocytic infiltrates in the liver, kidney, medium size.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!