A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization of potential cellulose fiber from cattail fiber: A study on micro/nano structure and other properties. | LitMetric

Exploration of the application prospects of cattail fibers (CFs) in natural composites, and other fields is important for the sustainable development of new, green, light-weight, functional biomass materials. In this study, the physical and chemical properties, micro/nano structure, and mechanical characteristics of CFs were investigated. The CFs have a low density (618.0 kg m). The results of transmission electron microscopy and tensile testing data indicated that the cattail trunk fiber (CTF) bundle is composed of parenchyma cells and solid stone cells, demonstrating high specific modulus (10.1 MPa∙m·kg) and high elongation at break (3.9%). In turn, the cattail branch fiber (CBF) bundle is composed of parenchyma cells with specific "half-honeycomb" shape. The inner diaphragms divide these cells into the open cavities. This structural feature endows the CTF bundles with stable structure, good oil absorption and storage capacities. The chemical component and the Fourier transform infrared spectroscopy analyses show that the CFs have higher lignin content (20.6%) and wax content (11.5%), which are conducive to the improvement of corrosion resistance, thermal stability and lipophilic-hydrophobic property of CF. Finally, the thermogravimetric analysis indicates that its final degradation temperature is 404.5 °C, which is beneficial to the increase in processability of CFs-reinforced composites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2021.10.088DOI Listing

Publication Analysis

Top Keywords

micro/nano structure
8
bundle composed
8
composed parenchyma
8
parenchyma cells
8
characterization potential
4
potential cellulose
4
fiber
4
cellulose fiber
4
cattail
4
fiber cattail
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!