AI Article Synopsis

  • Fear extinction is crucial for treating psychiatric disorders, and oxytocin (OT) has been identified as a potential facilitator in this process.
  • The study found that endogenous OT levels significantly increase during fear extinction in the dorsal hippocampus (dHPC), suggesting it enhances the fear extinction process, especially when combined with BDNF.
  • OT's effects involve increased neural activity in critical brain regions, like the CA1-vHPC and the infralimbic cortex, underscoring the importance of the dHPC-mPFC pathway in fear extinction mechanisms.

Article Abstract

Fear extinction is impaired in some psychiatric disorders. Any treatment that facilitates the extinction of fear is a way to advance the treatment of related psychiatric disorders. Recent studies have highlighted the role of oxytocin (OT) in fear extinction, but the endogenous release of OT during fear extinction in the dorsal hippocampal (dHPC) is not clear. We investigated the release of OT during fear extinction and the role of the HPC - medial prefrontal cortex (mPFC) circuit and BDNF in the effects of exogenous OT on auditory fear conditioning in male rats. We found that the release of endogenous OT in the dHPC is significantly increased during the fear extinction process as measured by the microdialysis method. Increased freezing response in the OT-treated rats compared to saline-treated rats showed that exogenous OT in the dHPC enhanced the fear extinction. Injection of BDNF antagonist (ANA-12) into the infralimbic (IL) blocked the effect of exogenous OT on the dHPC. Following OT injection, BDNF levels increased in the dHPC, ventral HPC, and IL cortex; but decreased in the prelimbic cortex (PL). Finally, OT microinjected into the dHPC significantly increased neural activity of pyramidal neurons of the CA1-vHPC and IL but decreased the neural activity in the PL cortex. Our findings strongly support that the dHPC endogenous OT plays a crucial role in enhancing fear extinction. It seems that the activation of the HPC-mPFC pathway, and consequently, the release of BDNF in the IL cortex mediates the enhancing effects of OT on fear extinction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2021.108844DOI Listing

Publication Analysis

Top Keywords

fear extinction
32
fear
11
extinction
10
auditory fear
8
psychiatric disorders
8
release fear
8
dhpc increased
8
exogenous dhpc
8
injection bdnf
8
neural activity
8

Similar Publications

The elucidation of the functional neuroanatomy of human fear, or threat, extinction has started in the 2000s by a series of enthusiastically greeted functional magnetic resonance imaging (fMRI) studies that were able to translate findings from rodent research about an involvement of the ventromedial prefrontal cortex (vmPFC) and the hippocampus in fear extinction into human models. Enthusiasm has been painfully dampened by a meta-analysis of human fMRI studies by Fullana and colleagues in 2018 who showed that activation in these areas is inconsistent, sending shock waves through the extinction research community. The present review guides readers from the field (as well as non-specialist readers desiring safe knowledge about human extinction mechanisms) during a series of exposures with corrective information.

View Article and Find Full Text PDF

The number of opioid overdose deaths has increased over the past several years, mainly driven by an increase in the availability of highly potent synthetic opioids, like fentanyl, in the un-regulated drug supply. Over the last few years, changes in the drug supply, and in particular the availability of counterfeit pills containing fentanyl, have made oral use of opioids a more common route of administration. Here, we used a drinking in the dark (DiD) paradigm to model oral fentanyl self-administration using increasing fentanyl concentrations in male and female mice over 5 weeks.

View Article and Find Full Text PDF

Background: Post-traumatic stress disorder (PTSD) causes intrusive symptoms and avoidance behaviours due to dysregulation in various brain regions, including the hippocampus. Deep brain stimulation (DBS) shows promise for refractory PTSD cases. In rodents, DBS improves fear extinction and reduces anxiety-like behaviours, but its effects on active-avoidance extinction remain unexplored.

View Article and Find Full Text PDF

Treating anxiety comorbidity: lessons from exposure generalization studies.

Behav Brain Res

December 2024

Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany.

Comorbidity is a characteristic hallmark of anxiety disorders. Presence of comorbid anxiety and depression is challenging to the diagnosis and treatment. Conventional and transdiagnostic treatment options for anxiety disorders strongly depend on the use of exposure.

View Article and Find Full Text PDF

The PAC1 receptor risk genotype does not influence fear acquisition, extinction, or generalization in no trauma/low trauma women.

Biol Psychol

December 2024

Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; ICREA, Barcelona, Spain. Electronic address:

Women are known to have twice as much lifetime prevalence of post-traumatic stress disorder (PTSD) as men do. It has been reported that the risk genotype (CC) of a single nucleotide polymorphism (SNP) (rs2267735) in the pituitary adenylate cyclase-activating polypeptide (PACAP-PAC1R) system is associated with PTSD risk and altered fear conditioning and fear extinction in women. Surprisingly, no previous work has studied the effect of this SNP on fear conditioning, extinction, or generalization in non-traumatized/low trauma load women.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!