A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Disturbance alters the forest soil microbiome. | LitMetric

Disturbance alters the forest soil microbiome.

Mol Ecol

Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia.

Published: January 2022

Billions of microorganisms perform critical below-ground functions in all terrestrial ecosystems. While largely invisible to the naked eye, they support all higher lifeforms, form symbiotic relationships with ~90% of terrestrial plant species, stabilize soils, and facilitate biogeochemical cycles. Global increases in the frequency of disturbances are driving major changes in the structure and function of forests. However, despite their functional significance, the disturbance responses of forest microbial communities are poorly understood. Here, we explore the influence of disturbance on the soil microbiome (archaea, fungi and bacteria) of some of the world's tallest and most carbon-dense forests, the Mountain Ash forests of south-eastern Australia. From 80 sites, we identified 23,277 and 19,056 microbial operational taxonomic units from the 0-10 cm and 20-30 cm depths of soil respectively. From this extensive data set, we found the diversity and composition of these often cryptic communities has been altered by human and natural disturbance events. For instance, the diversity of ectomycorrhizal fungi declined with clearcut logging, the diversity of archaea declined with salvage logging, and bacterial diversity and overall microbial diversity declined with the number of fires. Moreover, we identified key associations between edaphic (soil properties), environmental (slope, elevation) and spatial variables and the composition of all microbial communities. Specifically, we found that soil pH, manganese, magnesium, phosphorus, iron and nitrate were associated with the composition of all microbial communities. In a period of widespread degradation of global forest ecosystems, our findings provide an important and timely insight into the disturbance responses of soil microbial communities, which may influence key ecological functions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.16242DOI Listing

Publication Analysis

Top Keywords

microbial communities
16
soil microbiome
8
disturbance responses
8
composition microbial
8
soil
6
disturbance
5
microbial
5
communities
5
diversity
5
disturbance alters
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!