Background: β-N-oxalyl-l-α,β-diaminopropionic acid (β-ODAP) is a physiological indicator in response to drying soil. However, how abscisic acid (ABA) modulates β-ODAP accumulation and its related agronomic characteristics in drought stressed grass pea (Lathyrus sativus L.) continue to be unclear. The present study aimed to evaluate the effects of ABA addition on drought tolerance, agronomic characteristics and β-ODAP content in grass pea under drought stress.

Results: Exogenous ABA significantly promoted ABA levels by 19.3% and 18.3% under moderate and severe drought stress, respectively, compared to CK (without ABA, used as control check treatment). ABA addition activated earlier trigger of non-hydraulic root-sourced signal at 69.1% field capacity (FC) (65.5% FC in CK) and accordingly prolonged its operation period to 45.6% FC (49.0% FC in CK). This phenomenon was mechanically associated with the physiological mediation of ABA, where its addition significantly promoted the activities of leaf superoxide dismutase, catalase and peroxidase enzymes and the biosynthesis of leaf proline, simultaneously lowering the accumulation of malondialdehyde and hydrogen peroxide under moderate and severe stresses. Interestingly, ABA application significantly increased seed β-ODAP content by 21.7% and 21.3% under moderate and severe drought stress, but did not change leaf β-ODAP content. Furthermore, ABA application produced similar shoot biomass and grain yield as control groups.

Conclusion: Exogenous ABA improved the drought adaptability of grass pea and promoted the synthesis of β-ODAP in seeds but not in leaves. Our findings provide novel insights into the agronomic role of ABA in relation to β-ODAP enrichment in grass pea subjected to drought stress. © 2021 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.11597DOI Listing

Publication Analysis

Top Keywords

grass pea
20
agronomic characteristics
12
aba addition
12
β-odap content
12
moderate severe
12
drought stress
12
aba
11
abscisic acid
8
drought
8
β-n-oxalyl-l-αβ-diaminopropionic acid
8

Similar Publications

This study aimed to compare the conventional soybean ( L.) cultivation method with integrated systems in an Latossolo Vermelho Acriférrico típico and how these systems affect soil cover biomass production, initial nutrient concentration in plant residues, soil respiration and microclimate, as well as soybean growth, physiology and productivity. A comparative analysis of microclimate and soil respiration, plant physiology, and growth was conducted between a conventional soybean monoculture (soybean grown without plant residues on the soil from the previous crop) and soybean grown in soil containing maize residues.

View Article and Find Full Text PDF

Nutritional and Functional Characterization of Chia Expeller and Gluten-Free Flours as Ingredients for Premixes.

Plant Foods Hum Nutr

January 2025

UNCPBA, Facultad de Ingeniería, Departamento de Ingeniería Química y Tecnología de los Alimentos, TECSE, Olavarría, Buenos Aires, Argentina.

The growing consumer demand for healthier foods that help reduce the risk of chronic diseases has driven the food industry to innovate with nutritionally and technologically viable products. This trend and the nutritional gaps in gluten-free diets have spurred the exploration of unconventional, high-quality ingredients like flour from pseudocereals, legumes, and oilseeds. This study evaluated the nutritional and functional profiles of chia expeller and flours from buckwheat, green/yellow peas, and rice to study their potential as techno-functional ingredients for new gluten-free premixes.

View Article and Find Full Text PDF

Protein bar hardening negatively impacts shelf life, quality, and consumer acceptance. Although oxidation is known to negatively affect the flavor and texture of foods, the specific roles of lipid and protein oxidation in bar hardening have not been thoroughly investigated. Furthermore, most research has concentrated on dairy proteins, with a notable lack of studies addressing the hardening of plant-based protein bars.

View Article and Find Full Text PDF

The resistance () gene family in plants is a vital component of the plant defense system, enabling host resistance against pathogens through interactions with pathogen effector proteins. These R genes often encode nucleotide-binding (NB-ARC or N) and leucine-rich-repeat (LRR or L) domains, collectively forming the NLR protein family. The NLR proteins have been widely explored in crops from and , but limited studies are available for crops in other families, including .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!