Bitter taste receptors (TAS2Rs) are a poorly understood subgroup of G protein-coupled receptors (GPCRs). The experimental structure of these receptors has yet to be determined, and key-residues controlling their function remain mostly unknown. We designed an integrative approach to improve comparative modeling of TAS2Rs. Using current knowledge on class A GPCRs and existing experimental data in the literature as constraints, we pinpointed conserved motifs to entirely re-align the amino-acid sequences of TAS2Rs. We constructed accurate homology models of human TAS2Rs. As a test case, we examined the accuracy of the TAS2R16 model with site-directed mutagenesis and in vitro functional assays. This combination of in silico and in vitro results clarifies sequence-function relationships and proposes functional molecular switches that encode agonist sensing and downstream signaling mechanisms within mammalian TAS2Rs sequences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11073308PMC
http://dx.doi.org/10.1007/s00018-021-03968-7DOI Listing

Publication Analysis

Top Keywords

functional molecular
8
molecular switches
8
tas2rs
5
switches mammalian
4
mammalian protein-coupled
4
protein-coupled bitter-taste
4
receptors
4
bitter-taste receptors
4
receptors bitter
4
bitter taste
4

Similar Publications

l-theanine: From tea leaf to trending supplement - does the science match the hype for brain health and relaxation?

Nutr Res

January 2025

Department of Molecular Medicine, University of Padova, Padova, Italy; IMDEA-Food, Madrid, Spain. Electronic address:

l-Theanine is a unique non-protein amino acid found abundantly in tea leaves. Interest in its potential use as a dietary supplement has surged recently, especially claims related to promoting relaxation and cognitive enhancement. This review surveys the chemistry, metabolism, and purported biological activities of l-theanine.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a chronic joint condition affecting millions worldwide, characterized by the gradual degeneration of joint cartilage, leading to pain, stiffness, and functional impairment. Although the pathogenesis of OA is not fully understood, the roles of inflammation, metabolic dysregulation, and biomechanical stress are increasingly recognized. Current treatments, including pharmacotherapy, physical therapy, and surgical interventions, aim to alleviate symptoms and improve quality of life, yet they face limitations and challenges.

View Article and Find Full Text PDF

T-helper 17 (Th17) cells significantly influence the onset and advancement of malignancies. This study endeavor focused on delineating molecular classifications and developing a prognostic signature grounded in Th17 cell differentiation-related genes (TCDRGs) using machine learning algorithms in head and neck squamous cell carcinoma (HNSCC). A consensus clustering approach was applied to The Cancer Genome Atlas-HNSCC cohort based on TCDRGs, followed by an examination of differential gene expression using the limma package.

View Article and Find Full Text PDF

One hundred thirty-four germ line PU.1 variants and the agammaglobulinemic patients carrying them.

Blood

January 2025

Division of Immunology and Allergy, Children's Hospital of Philadelphia; Department of Pediatrics, Perelman School of Medicine; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.

Leukopoiesis is lethally arrested in mice lacking the master transcriptional regulator PU.1. Depending on the animal model, subtotal PU.

View Article and Find Full Text PDF

The exterior surface of the human pathogen is coated with a capsular polysaccharide (CPS) that consists of a repeating sequence of 2-5 different sugars that can be modified with various molecular decorations. In the HS:2 serotype from strain NCTC 11168, the repeating unit within the CPS is composed of d-ribose, -acetyl-d-galactosamine, and a d-glucuronic acid that is further amidated with either serinol or ethanolamine. The d-glucuronic acid moiety is also decorated with d-glycero-l-gluco-heptose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!