Introduction: Quaternary ammonium compounds (QUATs) are commonly found in cleaning products, disinfectants, hand sanitizers, and personal care products. They have been used for >50 years and are considered safe when used according to directions. Recent papers report reduced fertility and neural tube defects in rodents after low-level exposures. To determine if QUATs interfere with mammalian reproduction and development, we conducted a methodical assessment of all available data.

Methods: A systematic literature search identified 789 potential articles. Review of titles and abstracts found eight relevant studies, including two dissertation chapters; to these, 10 unpublished, guideline-compliant developmental and reproductive toxicity (DART) studies of QUATs (alkyldimethylbenzylammonium chloride [ADBAC] and dialkyldimethylammonium chloride [DDAC]) were added. ToxRTool was utilized to evaluate all 18 studies for data quality.

Results: Six studies were scored as "reliable without restriction"; four studies were considered "reliable with restriction" (mainly due to small rabbit group sizes). No test article-related, adverse DART endpoints were reported in these studies. ToxRTool scored the remaining eight studies as "not reliable." The unreliable studies failed to fully describe methods and/or endpoints, did not quantify (and in some cases, did not verify) exposures, utilized non-standard test methods, reported endpoints incorrectly, and assessed endpoints at inappropriate times. Some (not all) unreliable studies reported adverse effects after 7.5 mg QUATs/kg/day (mice), but these results were inconsistent. The reliable studies tested exposures ≥100 mg/kg/day (rats) with no effects.

Conclusions: The available weight of evidence indicates no adverse DART effects after QUATs exposures at anticipated concentrations and normal use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9298261PMC
http://dx.doi.org/10.1002/bdr2.1963DOI Listing

Publication Analysis

Top Keywords

studies
10
quaternary ammonium
8
ammonium compounds
8
developmental reproductive
8
"reliable restriction"
8
adverse dart
8
unreliable studies
8
systematic assessment
4
assessment quaternary
4
compounds potential
4

Similar Publications

Shaping the structural dynamics of motor learning through cueing during sleep.

Sleep

January 2025

UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.

Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted Memory Reactivation (TMR), involving cueing learned material during post-training sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and post-training sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during post-training sleep affects performance gains and delayed microstructural remodeling, using both standard Diffusion Tensor Imaging (DTI) and advanced Neurite Orientation Dispersion & Density Imaging (NODDI).

View Article and Find Full Text PDF

Regulation of Dopamine Release by Tonic Activity Patterns in the Striatal Brain Slice.

ACS Chem Neurosci

January 2025

Departments of Psychiatry and Neurology, Division of Molecular Therapeutics, New York State Psychiatric Institute, Columbia University Medical Center, New York, New York 10032, United States.

Voluntary movement, motivation, and reinforcement learning depend on the activity of ventral midbrain neurons, which extend axons to release dopamine (DA) in the striatum. These neurons exhibit two patterns of action potential activity: low-frequency tonic activity that is intrinsically generated and superimposed high-frequency phasic bursts that are driven by synaptic inputs. acute striatal brain preparations are widely employed to study the regulation of evoked DA release but exhibit very different DA release kinetics than recordings.

View Article and Find Full Text PDF

Introduction: Wearables are electronic devices worn on the body to collect health data. These devices, like smartwatches and patches, use sensors to gather information on various health parameters. This review highlights current use and the potential benefit of wearable technology in patients with inflammatory bowel disease (IBD).

View Article and Find Full Text PDF

Protein Phosphatase 2A B'α and B'β promote pollen wall construction partially through BZR1-activated CEP1 in Arabidopsis.

J Exp Bot

January 2025

Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.

A well-constructed pollen wall is essential for pollen fertility, which relies on the contribution of tapetum. Our results demonstrate an essential role of the tapetum-expressed protein phosphatase 2A (PP2A) B'α and B'β in pollen wall formation. The b'aβ double mutant pollen grains harbored sticky remnants and tectum breakages, resulting in failed release.

View Article and Find Full Text PDF

Study Objectives: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) may improve sleep dysfunction, a common non-motor symptom of Parkinson disease (PD). Improvement in motor symptoms correlates with DBS-suppressed local field potential (LFP) activity, particularly in the beta frequency (13 - 30 Hz). Although well-characterized in the short term, little is known about the innate progression of these oscillations across the sleep-wake cycle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!