Electrochemical CO Reduction on Cu: Synthesis-Controlled Structure Preference and Selectivity.

Adv Sci (Weinh)

Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, China.

Published: December 2021

The electrochemical CO reduction reaction (ECO RR) on Cu catalysts affords high-value-added products and is therefore of great practical significance. The outcome and kinetics of ECO RR remain insufficient, requiring essentially the optimized structure design for the employed Cu catalyst, and also the fine synthesis controls. Herein, synthesis-controlled structure preferences and the modulation of intermediate's interactions are considered to provide synthesis-related insights on the design of Cu catalysts for selective ECO RR. First, the origin of ECO RR intermediate-dominated selectivity is described. Advanced structural engineering approaches, involving alloy/compound formation, doping/defect introduction, and the use of specific crystal facets/amorphization, heterostructures, single-atom catalysts, surface modification, and nano-/microstructures, are then reviewed. In particular, these structural engineering approaches are discussed in association with diversified synthesis controls, and the modulation of intermediate generation, adsorption, reaction, and additional effects. The results pertaining to synthetic methodology-controlled structural preferences and the correspondingly motivated selectivity are further summarized. Finally, the current opportunities and challenges of Cu catalyst fabrication for highly selective ECO RR are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8655169PMC
http://dx.doi.org/10.1002/advs.202101597DOI Listing

Publication Analysis

Top Keywords

electrochemical reduction
8
synthesis-controlled structure
8
synthesis controls
8
selective eco
8
structural engineering
8
engineering approaches
8
eco
5
reduction synthesis-controlled
4
structure preference
4
preference selectivity
4

Similar Publications

Due to the high cost of the available Pt electrocatalysts, the large-scale water electrolysis production of hydrogen has been hindered. Hydrogen generation via electrochemical water splitting is a renewable energy essential to a sustainable society, creating a distinct material interface that shows Pt-like properties with long-term stability crucial to hydrogen evolution reactions (HERs). Here, we synthesized the guanine-assisted facile synthesis of 1 wt % Pt/MoC/C having a layered type morphology via solid state calcined process followed by chemical reduction.

View Article and Find Full Text PDF

In order to achieve high quality production of vitamin E and plant sterols, it is necessary to conduct rapid and accurate detection of fungal toxins in their production raw material (vegetable oil deodorizer distillate, VODD). In this study, the flower-like biomimetic enzyme of silver-doped ZnO was synthesized through wet chemical method and in-situ reduction method. Based on above work, a flower-like biomimetic enzyme modified glass carbon electrode was fabricated, and its excellent detection capability against fungal toxins zearalenone was confirmed through electrochemical analysis.

View Article and Find Full Text PDF

Metagenomic insights into efficiency and mechanism of antibiotic resistome reduction by electronic mediators-enhanced microbial electrochemical system.

J Hazard Mater

January 2025

Engineering Research Center of Groundwater Pollution Control and Remediation (Ministry of Education), College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China. Electronic address:

Electronic mediators are an effective means of enhancing the efficiency of microbial electrochemical electron transfer; however, there are still gaps in understanding the strengthening mechanisms and the efficiency of removing antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). This study systematically elucidates the effects of various electron mediators on bioelectrochemical processes, electron transfer efficiency, and the underlying mechanisms that inhibit ARG propagation within sediment microbial fuel cell systems (SMFCs). The results indicate that the addition of electron mediators significantly increased the output voltage (33.

View Article and Find Full Text PDF

Electrolyte reactivity on electrode surfaces for active species formation and Reactive Red X-3B degradation in electrochemical treatment of dyeing wastewater.

J Environ Manage

January 2025

School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institution of Pollution Control and Ecological Security, Shanghai, 200092, PR China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, PR China.

The pivotal role of electrolytes such as NaSO and NaCl in electrochemical treatment of dyeing wastewater was investigated by comparing recalcitrant Reactive Red X-3B (RRX-3B) degradation rates, active species formation and intermediates generation in a double-chamber cell. It was found that similar reactive oxygen species (ROS) formed in the anodic chamber are OH and O, in the cathodic chamber is O with different electrolytes, while this is not the case for ROS contribution, RRX-3B degradation kinetic and intermediates. NaCl favored the generation of O, faster decolorization (-N=N- cleavage), and organic intermediates degradation in the anodic chamber.

View Article and Find Full Text PDF

Given the inherent challenges of the CO electroreduction (COER) reaction, solely from CO and HO, it is desirable to develop selective product formation pathways. This can be achieved by designing multimetallic nanocomposites that provide optimal CO coverage, allowing for tunability in the product formation. In this work, Ag and Zn codoped-SrTiO (ZAST) composite immobilized carbon black (CB)-modified GCE working electrode (ZAST@CB/GCE) was developed for the electrochemical conversion of CO to multicarbon products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!