The bone microenvironment is one of the most hypoxic regions of the human body and in experimental models; hypoxia inhibits osteogenic differentiation of mesenchymal stromal cells (MSCs). Our previous work revealed that Mucin 1 (MUC1) was dynamically expressed during osteogenic differentiation of human MSCs and upregulated by hypoxia. Upon stimulation, its C-terminus (MUC1-CT) is proteolytically cleaved, translocases to the nucleus, and binds to promoters of target genes. Therefore, we assessed the MUC1-mediated effect of hypoxia on the proteomic composition of human osteoblast-derived extracellular matrices (ECMs) and characterized their osteogenic and angiogenic potentials in the produced ECMs. We generated ECMs from osteogenically differentiated human MSC cultured in vitro under 20% or 2% oxygen with or without GO-201, a MUC1-CT inhibitor. Hypoxia upregulated MUC1, vascular endothelial growth factor, and connective tissue growth factor independent of MUC1 inhibition, whereas GO-201 stabilized hypoxia-inducible factor 1-alpha. Hypoxia and/or MUC1-CT inhibition reduced osteogenic differentiation of human MSC by AMP-activated protein kinase/mTORC1/S6K pathway and dampened their matrix mineralization. Hypoxia modulated ECMs by transforming growth factor-beta/Smad and phosphorylation of NFκB and upregulated COL1A1, COL5A1, and COL5A3. The ECMs of hypoxic osteoblasts reduced MSC proliferation and accelerated their osteogenic differentiation, whereas MUC1-CT-inhibited ECMs counteracted these effects. In addition, ECMs generated under MUC1-CT inhibition reduced the angiogenic potential independent of oxygen concentration. We claim here that MUC1 is critical for hypoxia-mediated changes during osteoblastogenesis, which not only alters the proteomic landscape of the ECM but thereby also modulates its osteogenic and angiogenic potentials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9298310PMC
http://dx.doi.org/10.1002/jcp.30617DOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
16
osteogenic angiogenic
12
alters proteomic
8
proteomic composition
8
composition human
8
reduced osteogenic
8
angiogenic potential
8
differentiation human
8
angiogenic potentials
8
ecms generated
8

Similar Publications

Emerging techniques of additive manufacturing, such as vat-based three-dimensional (3D) bioprinting, offer novel routes to prepare personalized scaffolds of complex geometries. However, there is a need to develop bioinks suitable for clinical translation. This study explored the potential of bacterial-sourced methacrylate levan (LeMA) as a bioink for the digital light processing (DLP) 3D bioprinting of bone tissue scaffolds.

View Article and Find Full Text PDF

Background: The human microbiome is crucial in regulating intestinal and systemic functions. While its role in cardiovascular disease is better understood, the link between intestinal microbiota and valvular heart diseases (VHD) remains largely unexplored.

Methods: Peer-reviewed studies on human, animal or cell models analysing gut microbiota profiles published up to April 2024 were included.

View Article and Find Full Text PDF

Inflammation significantly influences cellular communication in the oral environment, impacting tissue repair and regeneration. This study explores the role of small extracellular vesicles (sEVs) derived from lipopolysaccharide (LPS)-treated stem cells from the apical papilla (SCAP) in modulating macrophage polarization and osteoblast differentiation. SCAPs were treated with LPS for 24 h, and sEVs from untreated (SCAP-sEVs) and LPS-treated SCAP (LPS-SCAP-sEVs) were isolated via ultracentrifugation and characterized using transmission electron microscopy, Western blot, and Tunable Resistive Pulse Sensing.

View Article and Find Full Text PDF

LINC01271 promotes fracture healing via regulating miR-19a-3p/PIK3CA axis.

J Orthop Surg Res

January 2025

Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, Guangdong, China.

Objective: Osteoporosis increases the risk of fragility fractures, impacting patients' lives. This study aimed to investigate whether LINC01271 was involved in the process of fragility fractures and healing, providing a new perspective for its diagnosis and treatment.

Methods: This study included 94 healthy individuals, 82 patients with osteoporosis, and 85 patients with fragility fractures as subjects.

View Article and Find Full Text PDF

17β-estradiol promotes osteogenic differentiation of BMSCs by regulating mitophagy through ARC.

J Orthop Surg Res

January 2025

Department of Oral and Maxillofacial Surgery - Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.

The study aims to elucidate the mechanism through which 17β-estradiol facilitates osteogenic differentiation in bone marrow mesenchymal stem cells (BMSCs). In our study, lentiviral transfection was employed to establish apoptosis repressor with caspase recruitment domain (ARC) knockdown or overexpression in BMSCs. The impact of 17β-estradiol on ARC expression was assessed using western blot, RT-PCR and immunofluorescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!