is an endemic tree from the Mascarene Islands that belongs to the Anacardiaceae family. The leaves of this plant were phytochemically studied previously, and isolated alkyl cyclohexenone derivatives, poupartones A - C, demonstrated antiplasmodial and antimalarial activities. In addition to their high potency against the , high toxicity on human cells was also displayed. The present study aims to investigate in more detail the cytotoxicity and pharmacological interest of poupartone B, one of the most abundant derivatives in the leaves of . For that purpose, real-time live-cell imaging of different human cancer cell lines and normal fibroblasts, treated or not treated with poupartone B, was performed. A potent inhibition of cell proliferation associated with the induction of cell death was observed. A detailed morphological analysis of different adherent cell lines exposed to high concentrations of poupartone B (1 - 2 µg/mL) demonstrated that this compound induced an array of cellular alterations, including a rapid retraction of cellular protrusions associated with cell rounding, massive cytoplasmic vacuolization, loss of plasma membrane integrity, and plasma membrane bubbling, ultimately leading to paraptosis-like cell death. The structure-activity relation of this class of compounds, their selective toxicity, and pharmacological potential are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1055/a-1532-2384DOI Listing

Publication Analysis

Top Keywords

cell lines
12
alkyl cyclohexenone
8
human cancer
8
cancer cell
8
cell death
8
plasma membrane
8
cell
7
cytotoxicity poupartone
4
poupartone alkyl
4
cyclohexenone derivative
4

Similar Publications

Mental disorders are complex illnesses with multifactorial etiologies involving genetic and environmental components. This review focuses on cellular models derived from the olfactory epithelium as a promising tool to study the molecular mechanisms of some neuropsychiatric diseases. The authors consider cell lines allowing the identification of potential biomarkers and pathogenetic mechanisms of schizophrenia, bipolar disorder, and Alzheimer's disease.

View Article and Find Full Text PDF

Patient-derived organoids represent a novel platform to recapitulate the cancer cells in the patient tissue. While cancer heterogeneity has been extensively studied by a number of omics approaches, little is known about the spatiotemporal kinase activity dynamics. Here we applied a live imaging approach to organoids derived from 10 pancreatic ductal adenocarcinoma (PDAC) patients to comprehensively understand their heterogeneous growth potential and drug responses.

View Article and Find Full Text PDF

A Modular Engineered DNA Nanodevice for Precise Profiling of Telomerase RNA Location and Activity.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.

Increased telomerase activity has been considered as a conspicuous sign of human cancers. The catalytic cores of telomerase involve a reverse transcriptase and the human telomerase RNA (hTR). However, current detection of telomerase is largely limited to its activity at the tissue and single-cell levels.

View Article and Find Full Text PDF

The OsMAPK6-OsWRKY72 module positively regulates rice leaf angle through brassinosteroid signals.

Plant Commun

December 2024

Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan' Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding/Fuzhou Branch, National Center of Rice Improvement of China/National Engineering Laboratory of Rice/South Base of National Key Laboratory of Hybrid Rice of China, Fuzhou 350003, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:

Leaf angle is a major agronomic trait that determines plant architecture, which directly affects rice planting density, photosynthetic efficiency, and yield. The plant phytohormones brassinosteroids (BRs) and the MAPK signaling cascade are known to play crucial roles in regulating the leaf angle, but the underlying molecular mechanisms are not fully understood. Here, we report a rice WRKY family transcription factor gene, OsWRKY72, which positively regulates leaf angle by affecting lamina joint development and BR signaling.

View Article and Find Full Text PDF

Background And Aims: Since salinity stress may occur across stages of rice (Oryza sativa L.) crop growth, understanding the effects of salinity at reproductive stage is important although it has been much less studied than at seedling stage.

Methods: In this study, lines from the Rice Diversity Panel 1 (RDP1) and the 3000 Rice Genomes (3KRG) were used to screen morphological and physiological traits, map loci controlling salinity tolerance through genome-wide association studies (GWAS), and identify favorable haplotypes associated with reproductive stage salinity tolerance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!